DOI QR코드

DOI QR Code

Wogonin Attenuates Hippocampal Neuronal Loss and Cognitive Dysfunction in Trimethyltin-Intoxicated Rats

  • Lee, Bombi (Acupuncture and Meridian Science Research Center) ;
  • Sur, Bongjun (Acupuncture and Meridian Science Research Center) ;
  • Cho, Seong-Guk (The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University) ;
  • Yeom, Mijung (Acupuncture and Meridian Science Research Center) ;
  • Shim, Insop (Acupuncture and Meridian Science Research Center) ;
  • Lee, Hyejung (Acupuncture and Meridian Science Research Center) ;
  • Hahm, Dae-Hyun (Acupuncture and Meridian Science Research Center)
  • Received : 2015.09.15
  • Accepted : 2016.02.12
  • Published : 2016.05.01

Abstract

We examined whether wogonin (WO) improved hippocampal neuronal activity, behavioral alterations and cognitive impairment, in rats induced by administration of trimethyltin (TMT), an organotin compound that is neurotoxic to these animals. The ability of WO to improve cognitive efficacy in the TMT-induced neurodegenerative rats was investigated using a passive avoidance test, and the Morris water maze test, and using immunohistochemistry to detect components of the acetylcholinergic system, brain-derived neurotrophic factor (BDNF), and cAMP-response element-binding protein (CREB) expression. Rats injected with TMT showed impairments in learning and memory and daily administration of WO improved memory function, and reduced aggressive behavior. Administration of WO significantly alleviated the TMT-induced loss of cholinergic immunoreactivity and restored the hippocampal expression levels of BDNF and CREB proteins and their encoding mRNAs to normal levels. These findings suggest that WO might be useful as a new therapy for treatment of various neurodegenerative diseases.

Keywords

References

  1. Brabeck, C., Michetti, F., Geloso, M. C., Corvino, V., Goezalan, F., Meyermann, R. and Schluesener, H. J. (2002) Expression of EMAP-II by activated monocytes/microglial cells in different regions of the rat hippocampus after trimethyltin-induced brain damage. Exp. Neurol. 177, 341-346. https://doi.org/10.1006/exnr.2002.7985
  2. Chen, S., Xiong, J., Zhan, Y., Liu, W. and Wang, X. (2015) Wogonin inhibits LPS-induced inflammatory responses in rat dorsal root ganglion neurons via inhibiting TLR4-MyD88-TAK1-mediated NF-${\kappa}B$ and MAPK signaling pathway. Cell. Mol. Neurobiol. 35, 523-531. https://doi.org/10.1007/s10571-014-0148-4
  3. Cho, J. and Lee, H. K. (2004) Wogonin inhibits excitotoxic and oxidative neuronal damage in primary cultured rat cortical cells. Eur. J. Pharmacol. 485, 105-110. https://doi.org/10.1016/j.ejphar.2003.11.064
  4. Frautschy, S. A., Hu, W., Kim, P., Miller, S. A., Chu, T., Harris-White, M. E. and Cole, G. M. (2001) Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol. Aging 22, 993-1005. https://doi.org/10.1016/S0197-4580(01)00300-1
  5. Gasparova, Z., Janega, P., Stara, V. and Ujhazy, E. (2012) Early and late stage of neurodegeneration induced by trimethyltin in hippocampus and cortex of male Wistar rats. Neuroendocrinol. Lett. 33, 689-696.
  6. Geloso, M. C., Corvino, V., Cavallo, V., Toesca, A., Guadagni, E., Passalacqua, R. and Michetti, F. (2004) Expression of astrocytic nestin in the rat hippocampus during trimethyltin-induced neurodegeneration. Neurosci. Lett. 357, 103-106. https://doi.org/10.1016/j.neulet.2003.11.076
  7. Geloso, M. C., Corvino, V. and Michetti, F. (2011) Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochem. Int. 58, 729-738. https://doi.org/10.1016/j.neuint.2011.03.009
  8. Geloso, M. C., Vercelli, A., Corvino, V., Repici, M., Boca, M., Haglid, K., Zelano, G. and Michetti, F. (2002) Cyclooxygenase-2 and caspase 3 expression in trimethyltin-induced apoptosis in the mouse hippocampus. Exp. Neurol. 175, 152-160. https://doi.org/10.1006/exnr.2002.7866
  9. Giacobini, E. (2002) Long term stabilizing effect of cholinesterase inhibitors in the therapy of Alzheimer's disease. J. Neural Transm. Suppl. (62), 181-187.
  10. Ishikura, N., Tsunashima, K., Watanabe, K., Nishimura, T., Minabe, Y. and Kato, N. (2002) Neuropeptide Y and somatostatin participate differently in the seizure-generating mechanisms following trimethyltin- induced hippocampal damage. Neurosci. Res. 44, 237-248. https://doi.org/10.1016/S0168-0102(02)00132-3
  11. Kaur, S., Chhabra, R. and Nehru, B. (2013a) Ginkgo biloba extract attenuates hippocampal neuronal loss and cognitive dysfunction resulting from trimethyltin in mice. Phytomedicine 20, 178-186. https://doi.org/10.1016/j.phymed.2012.10.003
  12. Kaur, S. and Nehru, B. (2013b) Alteration in glutathione homeostasis and oxidative stress during the sequelae of trimethyltin syndrome in rat brain. Biol. Trace Elem. Res. 153, 299-308. https://doi.org/10.1007/s12011-013-9676-x
  13. Kim, J. K., Bae, H., Kim, M. J., Choi, S. J., Cho, H. Y., Hwang, H. J., Kim, Y. J., Lim, S. T., Kim, E. K., Kim, H. K., Kim, B. Y. and Shin, D. H. (2009) Inhibitory effect of Poncirus trifoliate on acetylcholinesterase and attenuating activity against trimethyltin-induced learning and memory impairment. Biosci. Biotechnol. Biochem. 73, 1105-1112. https://doi.org/10.1271/bbb.80859
  14. Kim, B. K., Tran, H. Y., Shin, E. J., Lee, C., Chung, Y. H., Jeong, J. H., Bach, J. H., Kim, W. K., Park, D. H., Saito, K., Nabeshima, T. and Kim, H. C. (2013) IL-6 attenuates trimethyltin-induced cognitive dysfunction via activation of JAK2/STAT3, M1 mAChR and ERK signaling network. Cell. Signal. 25, 1348-1360. https://doi.org/10.1016/j.cellsig.2013.02.017
  15. Koda, T., Kuroda, Y. and Imai, H. (2008) Protective effect of rutin against spatial memory impairment induced by trimethyltin in rats. Nutr. Res. 28, 629-634. https://doi.org/10.1016/j.nutres.2008.06.004
  16. Kotani, S., Yamauchi, T., Teramoto, T. and Oqura, H. (2006) Pharmacological evidence of cholinergic involvement in adult hippocampal neurogenesis in rats. Neuroscience 142, 505-514. https://doi.org/10.1016/j.neuroscience.2006.06.035
  17. Lee, Y. M., Cheng, P. Y., Chen, S. Y., Chung, M. T. and Sheu, J. R. (2011) Wogonin suppresses arrhythmias, inflammatory responses, and apoptosis induced by myocardial ischemia/reperfusion in rats. J. Cardiovasc. Pharmacol. 58, 133-142. https://doi.org/10.1097/FJC.0b013e31821a5078
  18. Nishimura, T., Schwarzer, C., Furtinger, S., Imai, H., Kato, N. and Sperk, G. (2001) Changes in the GABA-ergic system induced by trimethyltin application in the rat. Brain Res. Mol. Brain Res. 97, 1-6. https://doi.org/10.1016/S0169-328X(01)00278-9
  19. Park, H. J., Shim, H. S., Ahn, Y. H., Kim, K. S., Park, K. J., Choi, W. K., Ha, H. C., Kang, J. I., Kim, T. S., Yeo, I. H., Kim, J. S. and Shim, I. (2012) Tremella fuciformis enhances the neurite outgrowth of PC12 cells and restores trimethyltin-induced impairment of memory in rats via activation of CREB transcription and cholinergic systems. Behav. Brain Res. 229, 82-90. https://doi.org/10.1016/j.bbr.2011.11.017
  20. Park, H. J., Shim, H. S., Choi, W. K., Kim, K. S., Bae, H. and Shim, I. (2011) Neuroprotective Effect of Lucium chinense Fruit on Trimethyltin-Induced Learning and Memory Deficits in the Rats. Exp. Neurobiol. 20, 137-143. https://doi.org/10.5607/en.2011.20.3.137
  21. Paxinos, G. and Watson, C. (1986) The rat brain in stereotaxic coordinates. Academic Press., New York. U.S.A. 54-85.
  22. Piao, H. Z., Choi, I. Y., Park, J. S., Kim, H. S., Cheong, J. H., Son, K. H., Jeon, S. J., Ko, K. H. and Kim, W. K. (2008) Wogonin inhibits microglial cell migration via suppression of nuclear factor-kappa B activity. Int. Immunopharmacol. 8, 1658-1662. https://doi.org/10.1016/j.intimp.2008.07.018
  23. Vaynman, S., Ying, Z. and Gomez-Pinilla, F. (2003) Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience 122, 647-657. https://doi.org/10.1016/j.neuroscience.2003.08.001
  24. Viviani, B., Bartesaghi, S., Corsini, E., Villa, P., Ghezzi, P., Garau, A., Galli, C. L. and Marinovich, M. (2005) Erythropoietin protects primary hippocampal neurons increasing the expression of brainderived neurotrophic factor. J. Neurochem. 93, 412-421. https://doi.org/10.1111/j.1471-4159.2005.03033.x
  25. Yang, M., Kim, J., Kim, T., Kim, S. H., Kim, J. C., Kim, J., Takayama, C., Hayashi, A., Joo, H. G., Shin, T. and Moon, C. (2012) Possible involvement of galectin-3 in microglial activation in the hippocampus with trimethyltin treatment. Neurochem. Int. 61, 955-962. https://doi.org/10.1016/j.neuint.2012.09.015
  26. Zhao, B. (2009) Natural antioxidants protect neurons in Alzheimer's disease and Parkinson's disease. Neurochem. Res. 34, 630-638. https://doi.org/10.1007/s11064-008-9900-9

Cited by

  1. Elevated triglyceride levels are associated with cognitive impairments among patients with major depressive disorder vol.75, 2017, https://doi.org/10.1016/j.comppsych.2017.03.007
  2. Melatonin ameliorates cognitive memory by regulation of cAMP-response element-binding protein expression and the anti-inflammatory response in a rat model of post-traumatic stress disorder vol.19, pp.1, 2018, https://doi.org/10.1186/s12868-018-0439-7
  3. The ethanolic extract of Aralia continentalis ameliorates cognitive deficits via modifications of BDNF expression and anti-inflammatory effects in a rat model of post-traumatic stress disorder vol.19, pp.1, 2019, https://doi.org/10.1186/s12906-018-2417-0
  4. Trimethyltin (TMT) Reduces Testosterone Production in Adult Leydig Cells in Rats vol.38, pp.6, 2019, https://doi.org/10.1177/1091581819870719
  5. 방기복령탕(防己茯苓湯)이 백서에서 LPS로 유도된 우울증에서 면역 조직학적 변화에 미치는 효과 vol.28, pp.1, 2020, https://doi.org/10.14374/hfs.2020.28.1.53