DOI QR코드

DOI QR Code

Columbianadin Inhibits Cell Proliferation by Inducing Apoptosis and Necroptosis in HCT116 Colon Cancer Cells

  • Kang, Ji In (College of Pharmacy, Seoul National University) ;
  • Hong, Ji-Young (College of Pharmacy, Seoul National University) ;
  • Choi, Jae Sue (Department of Food Science and Nutrition, Pukyong National University) ;
  • Lee, Sang Kook (College of Pharmacy, Seoul National University)
  • Received : 2015.09.08
  • Accepted : 2015.12.29
  • Published : 2016.05.01

Abstract

Columbianadin (CBN), a natural coumarin from Angelica decursiva (Umbelliferae), is known to have various biological activities including anti-inflammatory and anti-cancer effects. In this study, the anti-proliferative mechanism of actions mediated by CBN was investigated in HCT-116 human colon cancer cells. CBN effectively suppressed the growth of colon cancer cells. Low concentration (up to $25{\mu}M$) of CBN induced apoptosis, and high concentration ($50{\mu}M$) of CBN induced necroptosis. The induction of apoptosis by CBN was correlated with the modulation of caspase-9, caspase-3, Bax, Bcl-2, Bim and Bid, and the induction of necroptosis was related with RIP-3, and caspase-8. In addition, CBN induced the accumulation of ROS and imbalance in the intracellular antioxidant enzymes such as SOD-1, SOD-2, catalase and GPx-1. These findings demonstrate that CBN has the potential to be a candidate in the development of anti-cancer agent derived from natural products.

Keywords

References

  1. Ames, B. N. (1983) Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science 221, 1256-1264. https://doi.org/10.1126/science.6351251
  2. Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S. and Kalayci, O. (2012) Oxidative stress and antioxidant defense. World Allergy Organ. J. 5, 9-19. https://doi.org/10.1097/WOX.0b013e3182439613
  3. Cerutti, P., Krupitza, G., Larsson, R., Muehlematter, D., Crawford, D. and Amstad, P. (1988) Physiological and pathologic effects of oxidants in mouse epidermal cells. Ann. N. Y. Acad. Sci. 551, 75-81. https://doi.org/10.1111/j.1749-6632.1988.tb22321.x
  4. Cerutti, P. A. (1985) Prooxidant states and tumor promotion. Science 227, 375-381. https://doi.org/10.1126/science.2981433
  5. Chen, Y. F., Tsai, H. Y. and Wu, T. S. (1995) Anti-inflammatory and analgesic activities from roots of Angelica pubescens. Planta Med. 61, 2-8. https://doi.org/10.1055/s-2006-957987
  6. Christofferson, D. E. and Yuan, J. (2010) Necroptosis as an alternative form of programmed cell death. Curr. Opin. Cell Biol. 22, 263-268. https://doi.org/10.1016/j.ceb.2009.12.003
  7. Church, S. L., Grant, J. W., Meese, E. U. and Trent, J. M. (1992) Sublocalization of the gene encoding manganese superoxide dismutase (MnSOD/SOD2) to 6q25 by fluorescence in situ hybridization and somatic cell hybrid mapping. Genomics 14, 823-825. https://doi.org/10.1016/S0888-7543(05)80202-2
  8. Clerkin, J. S., Naughton, R., Quiney, C. and Cotter, T. G. (2008) Mechanisms of ROS modulated cell survival during carcinogenesis. Cancer Lett. 266, 30-36. https://doi.org/10.1016/j.canlet.2008.02.029
  9. D'Autreaux, B. and Toledano, M. B. (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813-824.
  10. Denning, T. L., Takaishi, H., Crowe, S. E., Boldogh, I., Jevnikar, A. and Ernst, P. B. (2002) Oxidative stress induces the expression of Fas and Fas ligand and apoptosis in murine intestinal epithelial cells. Free Radic. Biol. Med. 33, 1641-1650. https://doi.org/10.1016/S0891-5849(02)01141-3
  11. Dunai, Z. A., Imre, G., Barna, G., Korcsmaros, T., Petak, I., Bauer, P. I. and Mihalik, R. (2012) Staurosporine induces necroptotic cell death under caspase-compromised conditions in U937 cells. PLoS ONE 7, e41945. https://doi.org/10.1371/journal.pone.0041945
  12. Fiers, W., Beyaert, R., Declercq, W. and Vandenabeele, P. (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18, 7719-7730. https://doi.org/10.1038/sj.onc.1203249
  13. Galluzzi, L., Joza, N., Tasdemir, E., Maiuri, M. C., Hengartner, M., Abrams, J. M., Tavernarakis, N., Penninger, J., Madeo, F. and Kroemer, G. (2008) No death without life: vital functions of apoptotic effectors. Cell Death Differ. 15, 1113-1123. https://doi.org/10.1038/cdd.2008.28
  14. Huang, C., Luo, Y., Zhao, J., Yang, F., Zhao, H., Fan, W. and Ge, P. (2013) Shikonin kills glioma cells through necroptosis mediated by RIP-1. PLoS ONE 8, e66326. https://doi.org/10.1371/journal.pone.0066326
  15. Hyoudou, K., Nishikawa, M., Kobayashi, Y., Umeyama, Y., Yamashita, F. and Hashida, M. (2006) PEGylated catalase prevents metastatic tumor growth aggravated by tumor removal. Free Radic. Biol. Med. 41, 1449-1458. https://doi.org/10.1016/j.freeradbiomed.2006.08.004
  16. Hyoudou, K., Nishikawa, M., Kobayashi, Y., Ikemura, M., Yamashita, F. and Hashida, M. (2008) SOD derivatives prevent metastatic tumor growth aggravated by tumor removal. Clin. Exp. Metastasis 25, 531-536. https://doi.org/10.1007/s10585-008-9165-3
  17. Jacob, C., Cottrell, G. S., Gehringer, D., Schmidlin, F., Grady, E. F. and Bunnett, N. W. (2005) c-Cbl mediates ubiquitination, degradation, and down-regulation of human protease-activated receptor 2. J. Biol. Chem. 280, 16076-16087. https://doi.org/10.1074/jbc.M500109200
  18. Kerr, J. F., Wyllie, A. H. and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257. https://doi.org/10.1038/bjc.1972.33
  19. Khan, M. A., Tania, M., Zhang, D. Z. and Chen, H. C. (2010) Antioxidant enzymes and cancer. Chin. J. Cancer Res. 22, 87-92. https://doi.org/10.1007/s11670-010-0087-7
  20. Kim, Y. S., Morgan, M. J., Choksi, S. and Liu, Z. G. (2007) TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol. Cell 26, 675-687. https://doi.org/10.1016/j.molcel.2007.04.021
  21. Kong, Q. and Lillehei, K. O. (1998) Antioxidant inhibitors for cancer therapy. Med. Hypotheses 51, 405-409. https://doi.org/10.1016/S0306-9877(98)90036-6
  22. Lim, H. J., Lee, J. H., Choi, J. S., Lee, S. K., Kim, Y. S. and Kim, H. P. (2014) Inhibition of airway inflammation by the roots of Angelica decursiva and its constituent, columbianadin. J. Ethnopharmacol. 155, 1353-1361. https://doi.org/10.1016/j.jep.2014.07.033
  23. Mann, J. (2002) Natural products in cancer chemotherapy: past, present and future. Nat. Rev. Cancer 2, 143-148. https://doi.org/10.1038/nrc723
  24. Medan, D., Wang, L., Toledo, D., Lu, B., Stehlik, C., Jiang, B. H., Shi, X. and Rojanasakul, Y. (2005) Regulation of Fas (CD95)-induced apoptotic and necrotic cell death by reactive oxygen species in macrophages. J. Cell. Physiol. 203, 78-84. https://doi.org/10.1002/jcp.20201
  25. Millikin, D., Meese, E., Vogelstein, B., Witkowski, C. and Trent, J. (1991) Loss of heterozygosity for loci on the long arm of chromosome 6 in human malignant melanoma. Cancer Res. 51, 5449-5453.
  26. Morgan, M. J., Kim, Y. S. and Liu, Z. (2007) Lipid rafts and oxidative stress-induced cell death. Antioxid. Redox Signal. 9, 1471-1483. https://doi.org/10.1089/ars.2007.1658
  27. Oberst, A., Dillon, C. P., Weinlich, R., McCormick, L. L., Fitzgerald, P., Pop, C., Hakem, R., Salvesen, G. S. and Green, D. R. (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3- dependent necrosis. Nature 471, 363-367. https://doi.org/10.1038/nature09852
  28. Ouyang, Z., Zhu, S., Jin, J., Li, J., Qiu, Y., Huang, M. and Huang, Z. (2012) Necroptosis contributes to the cyclosporin A-induced cytotoxicity in NRK-52E cells. Pharmazie 67, 725-732.
  29. Ozben, T. (2007) Oxidative stress and apoptosis: impact on cancer therapy. J. Pharm. Sci. 96, 2181-2196. https://doi.org/10.1002/jps.20874
  30. Pelicano, H., Carney, D. and Huang, P. (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat. 7, 97-110. https://doi.org/10.1016/j.drup.2004.01.004
  31. Pozarowski, P. and Darzynkiewicz, Z. (2004) Analysis of cell cycle by flow cytometry. Methods Mol. Biol. 281, 301-311.
  32. Ramsey, M. R. and Sharpless, N. E. (2006) ROS as a tumour suppressor? Nat. Cell Biol. 8, 1213-1215. https://doi.org/10.1038/ncb1106-1213
  33. Reinehr, R., Becker, S., Eberle, A., Grether-Beck, S. and Häussinger, D. (2005) Involvement of NADPH oxidase isoforms and Src family kinases in CD95-dependent hepatocyte apoptosis. J. Biol. Chem. 280, 27179-27194. https://doi.org/10.1074/jbc.M414361200
  34. Renschler, M. F. (2004) The emerging role of reactive oxygen species in cancer therapy. Eur. J. Cancer 40, 1934-1940. https://doi.org/10.1016/j.ejca.2004.02.031
  35. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S. and Boyd, M. R. (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82, 1107-1112. https://doi.org/10.1093/jnci/82.13.1107
  36. Stewart, B. W. and Wild, C. P. (2014) World cancer report 2014. International Agency for Research on Cancer, World Health Organization.
  37. Szychowski, J., Truchon, J. F. and Bennani, Y. L. (2014) Natural Products in Medicine: Transformational Outcome of Synthetic Chemistry. J. Med. Chem. 57, 9292-9308. https://doi.org/10.1021/jm500941m
  38. Tammela, P., Wennberg, T., Vuorela, H. and Vuorela, P. (2004) HPLC micro-fractionation coupled to a cell-based assay for automated on-line primary screening of calcium antagonistic components in plant extracts. Anal. Bioanal. Chem. 380, 614-618. https://doi.org/10.1007/s00216-004-2795-7
  39. Toler, S. M., Noe, D. and Sharma, A. (2006) Selective enhancement of cellular oxidative stress by chloroquine: implications for the treatment of glioblastoma multiforme. Neurosurg. Focus 21, E10.
  40. Uchikura, K., Wada, T., Hoshino, S., Nagakawa, Y., Aiko, T., Bulkley, G. B., Klein, A. S. and Sun, Z. (2004) Lipopolysaccharides induced increases in Fas ligand expression by Kupffer cells via mechanisms dependent on reactive oxygen species. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G620-G626. https://doi.org/10.1152/ajpgi.00314.2003
  41. Upton, J. W., Kaiser, W. J. and Mocarski, E. S. (2012) DAI/ZBP1/DLM- 1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe. 11, 290-297. https://doi.org/10.1016/j.chom.2012.01.016
  42. Ushio-Fukai, M. and Nakamura, Y. (2008) Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett. 266, 37-52. https://doi.org/10.1016/j.canlet.2008.02.044
  43. Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. and Kroemer, G. (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11, 700-714. https://doi.org/10.1038/nrm2970
  44. Wang, X. F., Zhang, J. S. and Xu, T. W. (2007) Cyclophosphamide as a potent inhibitor of tumor thioredoxin reductase in vivo. Toxicol. Appl. Pharmacol. 218, 88-95. https://doi.org/10.1016/j.taap.2006.10.029
  45. Wu, W., Liu, P. and Li, J. (2012) Necroptosis: an emerging form of programmed cell death. Crit. Rev. Oncol. Hematol. 82, 249-258. https://doi.org/10.1016/j.critrevonc.2011.08.004
  46. Yang, X. W., Guo, Q. M. and Wang, Y. (2008) Absorption and transport of 6 coumarins isolated from the roots of Angelica pubescens f. biserrata in human Caco-2 cell monolayer model. Zhong Xi Yi Jie He Xue Bao. 6, 392-398.
  47. Yang, X. W., Xu, B., Ran, F. X., Wang, R. Q., Wu, J. and Cui, J. R. (2007) Inhibitory effects of 11 coumarin compounds against growth of human bladder carcinoma cell line E-J in vitro. Zhong Xi Yi Jie He Xue Bao 5, 56-60.
  48. Zhang, D. W., Shao, J., Lin, J., Zhang, N., Lu, B. J., Lin, S. C., Dong, M. Q. and Han, J. (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332-336. https://doi.org/10.1126/science.1172308
  49. Zhang, Y. B., Li, W. and Yang, X. W. (2012) Biotransformation of columbianadin by rat hepatic microsomes and inhibition of biotransformation products on NO production in RAW 264.7 cells in vitro. Phytochemistry 81, 109-116. https://doi.org/10.1016/j.phytochem.2012.06.015

Cited by

  1. Shikonin induces glioma cell necroptosis in vitro by ROS overproduction and promoting RIP1/RIP3 necrosome formation 2017, https://doi.org/10.1038/aps.2017.112
  2. Simultaneous Determination of Columbianadin and Its Metabolite Columbianetin in Rat Plasma by LC-MS/MS: Application to Pharmacokinetics of Columbianadin after Oral Administration vol.2018, pp.1741-4288, 2018, https://doi.org/10.1155/2018/8568303
  3. Gomisin G Inhibits the Growth of Triple-Negative Breast Cancer Cells by Suppressing AKT Phosphorylation and Decreasing Cyclin D1 vol.26, pp.3, 2018, https://doi.org/10.4062/biomolther.2017.235
  4. The Tissue Distribution of Four Major Coumarins after Oral Administration of Angelicae Pubescentis Radix Extract to Rats Using Ultra-High-Performance Liquid Chromatography vol.2019, pp.1741-4288, 2019, https://doi.org/10.1155/2019/2365697
  5. Exploring the Pharmacological Mechanism of the Herb Pair “HuangLian-GanJiang” against Colorectal Cancer Based on Network Pharmacology vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/2735050
  6. Goniothalamin Induces Necroptosis and Anoikis in Human Invasive Breast Cancer MDA-MB-231 Cells vol.20, pp.16, 2016, https://doi.org/10.3390/ijms20163953
  7. Ethnobotany, Phytochemistry, and Pharmacology of Angelica decursiva Fr. et Sav. vol.25, pp.3, 2016, https://doi.org/10.20307/nps.2019.25.3.181
  8. Anti-Proliferative Activity of Nodosin, a Diterpenoid from Isodon serra, via Regulation of Wnt/β-Catenin Signaling Pathways in Human Colon Cancer Cells vol.28, pp.5, 2016, https://doi.org/10.4062/biomolther.2020.003
  9. Reduction of NF-κB Signals in Platelets and Prolongation of Platelet Plug Formation against High Shear Flow in Whole Blood on Human Subject by Columbianadin vol.10, pp.20, 2016, https://doi.org/10.3390/app10207323
  10. Effectiveness of Columbianadin, a Bioactive Coumarin Derivative, in Perturbing Transient and Persistent I Na vol.22, pp.2, 2016, https://doi.org/10.3390/ijms22020621
  11. Coumarins and Gastrointestinal Cancer: A New Therapeutic Option? vol.11, pp.None, 2021, https://doi.org/10.3389/fonc.2021.752784
  12. Inhibition of microtubule assembly and cytotoxic effect of graphene oxide on human colorectal carcinoma cell HCT116 vol.708, pp.None, 2021, https://doi.org/10.1016/j.abb.2021.108940
  13. Discovery of Sulforaphane as an Inducer of Ferroptosis in U-937 Leukemia Cells: Expanding Its Anticancer Potential vol.14, pp.1, 2016, https://doi.org/10.3390/cancers14010076
  14. Immunosuppressive effect of Columbianadin on maturation, migration, allogenic T cell stimulation and phagocytosis capacity of TNF-α induced dendritic cells vol.285, pp.None, 2016, https://doi.org/10.1016/j.jep.2021.114918