References
- Ames, B. N. (1983) Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science 221, 1256-1264. https://doi.org/10.1126/science.6351251
- Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S. and Kalayci, O. (2012) Oxidative stress and antioxidant defense. World Allergy Organ. J. 5, 9-19. https://doi.org/10.1097/WOX.0b013e3182439613
- Cerutti, P., Krupitza, G., Larsson, R., Muehlematter, D., Crawford, D. and Amstad, P. (1988) Physiological and pathologic effects of oxidants in mouse epidermal cells. Ann. N. Y. Acad. Sci. 551, 75-81. https://doi.org/10.1111/j.1749-6632.1988.tb22321.x
- Cerutti, P. A. (1985) Prooxidant states and tumor promotion. Science 227, 375-381. https://doi.org/10.1126/science.2981433
- Chen, Y. F., Tsai, H. Y. and Wu, T. S. (1995) Anti-inflammatory and analgesic activities from roots of Angelica pubescens. Planta Med. 61, 2-8. https://doi.org/10.1055/s-2006-957987
- Christofferson, D. E. and Yuan, J. (2010) Necroptosis as an alternative form of programmed cell death. Curr. Opin. Cell Biol. 22, 263-268. https://doi.org/10.1016/j.ceb.2009.12.003
- Church, S. L., Grant, J. W., Meese, E. U. and Trent, J. M. (1992) Sublocalization of the gene encoding manganese superoxide dismutase (MnSOD/SOD2) to 6q25 by fluorescence in situ hybridization and somatic cell hybrid mapping. Genomics 14, 823-825. https://doi.org/10.1016/S0888-7543(05)80202-2
- Clerkin, J. S., Naughton, R., Quiney, C. and Cotter, T. G. (2008) Mechanisms of ROS modulated cell survival during carcinogenesis. Cancer Lett. 266, 30-36. https://doi.org/10.1016/j.canlet.2008.02.029
- D'Autreaux, B. and Toledano, M. B. (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813-824.
- Denning, T. L., Takaishi, H., Crowe, S. E., Boldogh, I., Jevnikar, A. and Ernst, P. B. (2002) Oxidative stress induces the expression of Fas and Fas ligand and apoptosis in murine intestinal epithelial cells. Free Radic. Biol. Med. 33, 1641-1650. https://doi.org/10.1016/S0891-5849(02)01141-3
- Dunai, Z. A., Imre, G., Barna, G., Korcsmaros, T., Petak, I., Bauer, P. I. and Mihalik, R. (2012) Staurosporine induces necroptotic cell death under caspase-compromised conditions in U937 cells. PLoS ONE 7, e41945. https://doi.org/10.1371/journal.pone.0041945
- Fiers, W., Beyaert, R., Declercq, W. and Vandenabeele, P. (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18, 7719-7730. https://doi.org/10.1038/sj.onc.1203249
- Galluzzi, L., Joza, N., Tasdemir, E., Maiuri, M. C., Hengartner, M., Abrams, J. M., Tavernarakis, N., Penninger, J., Madeo, F. and Kroemer, G. (2008) No death without life: vital functions of apoptotic effectors. Cell Death Differ. 15, 1113-1123. https://doi.org/10.1038/cdd.2008.28
- Huang, C., Luo, Y., Zhao, J., Yang, F., Zhao, H., Fan, W. and Ge, P. (2013) Shikonin kills glioma cells through necroptosis mediated by RIP-1. PLoS ONE 8, e66326. https://doi.org/10.1371/journal.pone.0066326
- Hyoudou, K., Nishikawa, M., Kobayashi, Y., Umeyama, Y., Yamashita, F. and Hashida, M. (2006) PEGylated catalase prevents metastatic tumor growth aggravated by tumor removal. Free Radic. Biol. Med. 41, 1449-1458. https://doi.org/10.1016/j.freeradbiomed.2006.08.004
- Hyoudou, K., Nishikawa, M., Kobayashi, Y., Ikemura, M., Yamashita, F. and Hashida, M. (2008) SOD derivatives prevent metastatic tumor growth aggravated by tumor removal. Clin. Exp. Metastasis 25, 531-536. https://doi.org/10.1007/s10585-008-9165-3
- Jacob, C., Cottrell, G. S., Gehringer, D., Schmidlin, F., Grady, E. F. and Bunnett, N. W. (2005) c-Cbl mediates ubiquitination, degradation, and down-regulation of human protease-activated receptor 2. J. Biol. Chem. 280, 16076-16087. https://doi.org/10.1074/jbc.M500109200
- Kerr, J. F., Wyllie, A. H. and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257. https://doi.org/10.1038/bjc.1972.33
- Khan, M. A., Tania, M., Zhang, D. Z. and Chen, H. C. (2010) Antioxidant enzymes and cancer. Chin. J. Cancer Res. 22, 87-92. https://doi.org/10.1007/s11670-010-0087-7
- Kim, Y. S., Morgan, M. J., Choksi, S. and Liu, Z. G. (2007) TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol. Cell 26, 675-687. https://doi.org/10.1016/j.molcel.2007.04.021
- Kong, Q. and Lillehei, K. O. (1998) Antioxidant inhibitors for cancer therapy. Med. Hypotheses 51, 405-409. https://doi.org/10.1016/S0306-9877(98)90036-6
- Lim, H. J., Lee, J. H., Choi, J. S., Lee, S. K., Kim, Y. S. and Kim, H. P. (2014) Inhibition of airway inflammation by the roots of Angelica decursiva and its constituent, columbianadin. J. Ethnopharmacol. 155, 1353-1361. https://doi.org/10.1016/j.jep.2014.07.033
- Mann, J. (2002) Natural products in cancer chemotherapy: past, present and future. Nat. Rev. Cancer 2, 143-148. https://doi.org/10.1038/nrc723
- Medan, D., Wang, L., Toledo, D., Lu, B., Stehlik, C., Jiang, B. H., Shi, X. and Rojanasakul, Y. (2005) Regulation of Fas (CD95)-induced apoptotic and necrotic cell death by reactive oxygen species in macrophages. J. Cell. Physiol. 203, 78-84. https://doi.org/10.1002/jcp.20201
- Millikin, D., Meese, E., Vogelstein, B., Witkowski, C. and Trent, J. (1991) Loss of heterozygosity for loci on the long arm of chromosome 6 in human malignant melanoma. Cancer Res. 51, 5449-5453.
- Morgan, M. J., Kim, Y. S. and Liu, Z. (2007) Lipid rafts and oxidative stress-induced cell death. Antioxid. Redox Signal. 9, 1471-1483. https://doi.org/10.1089/ars.2007.1658
- Oberst, A., Dillon, C. P., Weinlich, R., McCormick, L. L., Fitzgerald, P., Pop, C., Hakem, R., Salvesen, G. S. and Green, D. R. (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3- dependent necrosis. Nature 471, 363-367. https://doi.org/10.1038/nature09852
- Ouyang, Z., Zhu, S., Jin, J., Li, J., Qiu, Y., Huang, M. and Huang, Z. (2012) Necroptosis contributes to the cyclosporin A-induced cytotoxicity in NRK-52E cells. Pharmazie 67, 725-732.
- Ozben, T. (2007) Oxidative stress and apoptosis: impact on cancer therapy. J. Pharm. Sci. 96, 2181-2196. https://doi.org/10.1002/jps.20874
- Pelicano, H., Carney, D. and Huang, P. (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat. 7, 97-110. https://doi.org/10.1016/j.drup.2004.01.004
- Pozarowski, P. and Darzynkiewicz, Z. (2004) Analysis of cell cycle by flow cytometry. Methods Mol. Biol. 281, 301-311.
- Ramsey, M. R. and Sharpless, N. E. (2006) ROS as a tumour suppressor? Nat. Cell Biol. 8, 1213-1215. https://doi.org/10.1038/ncb1106-1213
- Reinehr, R., Becker, S., Eberle, A., Grether-Beck, S. and Häussinger, D. (2005) Involvement of NADPH oxidase isoforms and Src family kinases in CD95-dependent hepatocyte apoptosis. J. Biol. Chem. 280, 27179-27194. https://doi.org/10.1074/jbc.M414361200
- Renschler, M. F. (2004) The emerging role of reactive oxygen species in cancer therapy. Eur. J. Cancer 40, 1934-1940. https://doi.org/10.1016/j.ejca.2004.02.031
- Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S. and Boyd, M. R. (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82, 1107-1112. https://doi.org/10.1093/jnci/82.13.1107
- Stewart, B. W. and Wild, C. P. (2014) World cancer report 2014. International Agency for Research on Cancer, World Health Organization.
- Szychowski, J., Truchon, J. F. and Bennani, Y. L. (2014) Natural Products in Medicine: Transformational Outcome of Synthetic Chemistry. J. Med. Chem. 57, 9292-9308. https://doi.org/10.1021/jm500941m
- Tammela, P., Wennberg, T., Vuorela, H. and Vuorela, P. (2004) HPLC micro-fractionation coupled to a cell-based assay for automated on-line primary screening of calcium antagonistic components in plant extracts. Anal. Bioanal. Chem. 380, 614-618. https://doi.org/10.1007/s00216-004-2795-7
- Toler, S. M., Noe, D. and Sharma, A. (2006) Selective enhancement of cellular oxidative stress by chloroquine: implications for the treatment of glioblastoma multiforme. Neurosurg. Focus 21, E10.
- Uchikura, K., Wada, T., Hoshino, S., Nagakawa, Y., Aiko, T., Bulkley, G. B., Klein, A. S. and Sun, Z. (2004) Lipopolysaccharides induced increases in Fas ligand expression by Kupffer cells via mechanisms dependent on reactive oxygen species. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G620-G626. https://doi.org/10.1152/ajpgi.00314.2003
- Upton, J. W., Kaiser, W. J. and Mocarski, E. S. (2012) DAI/ZBP1/DLM- 1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe. 11, 290-297. https://doi.org/10.1016/j.chom.2012.01.016
- Ushio-Fukai, M. and Nakamura, Y. (2008) Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett. 266, 37-52. https://doi.org/10.1016/j.canlet.2008.02.044
- Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. and Kroemer, G. (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11, 700-714. https://doi.org/10.1038/nrm2970
- Wang, X. F., Zhang, J. S. and Xu, T. W. (2007) Cyclophosphamide as a potent inhibitor of tumor thioredoxin reductase in vivo. Toxicol. Appl. Pharmacol. 218, 88-95. https://doi.org/10.1016/j.taap.2006.10.029
- Wu, W., Liu, P. and Li, J. (2012) Necroptosis: an emerging form of programmed cell death. Crit. Rev. Oncol. Hematol. 82, 249-258. https://doi.org/10.1016/j.critrevonc.2011.08.004
- Yang, X. W., Guo, Q. M. and Wang, Y. (2008) Absorption and transport of 6 coumarins isolated from the roots of Angelica pubescens f. biserrata in human Caco-2 cell monolayer model. Zhong Xi Yi Jie He Xue Bao. 6, 392-398.
- Yang, X. W., Xu, B., Ran, F. X., Wang, R. Q., Wu, J. and Cui, J. R. (2007) Inhibitory effects of 11 coumarin compounds against growth of human bladder carcinoma cell line E-J in vitro. Zhong Xi Yi Jie He Xue Bao 5, 56-60.
- Zhang, D. W., Shao, J., Lin, J., Zhang, N., Lu, B. J., Lin, S. C., Dong, M. Q. and Han, J. (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332-336. https://doi.org/10.1126/science.1172308
- Zhang, Y. B., Li, W. and Yang, X. W. (2012) Biotransformation of columbianadin by rat hepatic microsomes and inhibition of biotransformation products on NO production in RAW 264.7 cells in vitro. Phytochemistry 81, 109-116. https://doi.org/10.1016/j.phytochem.2012.06.015
Cited by
- Shikonin induces glioma cell necroptosis in vitro by ROS overproduction and promoting RIP1/RIP3 necrosome formation 2017, https://doi.org/10.1038/aps.2017.112
- Simultaneous Determination of Columbianadin and Its Metabolite Columbianetin in Rat Plasma by LC-MS/MS: Application to Pharmacokinetics of Columbianadin after Oral Administration vol.2018, pp.1741-4288, 2018, https://doi.org/10.1155/2018/8568303
- Gomisin G Inhibits the Growth of Triple-Negative Breast Cancer Cells by Suppressing AKT Phosphorylation and Decreasing Cyclin D1 vol.26, pp.3, 2018, https://doi.org/10.4062/biomolther.2017.235
- The Tissue Distribution of Four Major Coumarins after Oral Administration of Angelicae Pubescentis Radix Extract to Rats Using Ultra-High-Performance Liquid Chromatography vol.2019, pp.1741-4288, 2019, https://doi.org/10.1155/2019/2365697
- Exploring the Pharmacological Mechanism of the Herb Pair “HuangLian-GanJiang” against Colorectal Cancer Based on Network Pharmacology vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/2735050
- Goniothalamin Induces Necroptosis and Anoikis in Human Invasive Breast Cancer MDA-MB-231 Cells vol.20, pp.16, 2016, https://doi.org/10.3390/ijms20163953
- Ethnobotany, Phytochemistry, and Pharmacology of Angelica decursiva Fr. et Sav. vol.25, pp.3, 2016, https://doi.org/10.20307/nps.2019.25.3.181
- Anti-Proliferative Activity of Nodosin, a Diterpenoid from Isodon serra, via Regulation of Wnt/β-Catenin Signaling Pathways in Human Colon Cancer Cells vol.28, pp.5, 2016, https://doi.org/10.4062/biomolther.2020.003
- Reduction of NF-κB Signals in Platelets and Prolongation of Platelet Plug Formation against High Shear Flow in Whole Blood on Human Subject by Columbianadin vol.10, pp.20, 2016, https://doi.org/10.3390/app10207323
- Effectiveness of Columbianadin, a Bioactive Coumarin Derivative, in Perturbing Transient and Persistent I Na vol.22, pp.2, 2016, https://doi.org/10.3390/ijms22020621
- Coumarins and Gastrointestinal Cancer: A New Therapeutic Option? vol.11, pp.None, 2021, https://doi.org/10.3389/fonc.2021.752784
- Inhibition of microtubule assembly and cytotoxic effect of graphene oxide on human colorectal carcinoma cell HCT116 vol.708, pp.None, 2021, https://doi.org/10.1016/j.abb.2021.108940
- Discovery of Sulforaphane as an Inducer of Ferroptosis in U-937 Leukemia Cells: Expanding Its Anticancer Potential vol.14, pp.1, 2016, https://doi.org/10.3390/cancers14010076
- Immunosuppressive effect of Columbianadin on maturation, migration, allogenic T cell stimulation and phagocytosis capacity of TNF-α induced dendritic cells vol.285, pp.None, 2016, https://doi.org/10.1016/j.jep.2021.114918