DOI QR코드

DOI QR Code

Sub-10 nm Ge/GaAs Heterojunction-Based Tunneling Field-Effect Transistor with Vertical Tunneling Operation for Ultra-Low-Power Applications

  • Yoon, Young Jun (School of Electronics Engineering, Kyungpook National University) ;
  • Seo, Jae Hwa (School of Electronics Engineering, Kyungpook National University) ;
  • Cho, Seongjae (Department of Electronic Engineering, Gachon University) ;
  • Kwon, Hyuck-In (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Lee, Jung-Hee (School of Electronics Engineering, Kyungpook National University) ;
  • Kang, In Man (School of Electronics Engineering, Kyungpook National University)
  • 투고 : 2015.08.25
  • 심사 : 2015.11.27
  • 발행 : 2016.04.30

초록

In this paper, we propose a sub-10 nm Ge/GaAs heterojunction-based tunneling field-effect transistor (TFET) with vertical band-to-band tunneling (BBT) operation for ultra-low-power (LP) applications. We design a stack structure that is based on the Ge/GaAs heterojunction to realize the vertical BBT operation. The use of vertical BBT operations in devices results in excellent subthreshold characteristics with a reduction in the drain-induced barrier thinning (DIBT) phenomenon. The proposed device with a channel length ($L_{ch}$) of 5 nm exhibits outstanding LP performance with a subthreshold swing (S) of 29.1 mV/dec and an off-state current ($I_{off}$) of $1.12{\times}10^{-11}A/{\mu}m$. In addition, the use of the highk spacer dielectric $HfO_2$ improves the on-state current ($I_{on}$) with an intrinsic delay time (${\tau}$) because of a higher fringing field. We demonstrate a sub-10 nm LP switching device that realizes a good S and lower $I_{off}$ at a lower supply voltage ($V_{DD}$) of 0.2 V.

키워드

참고문헌

  1. A. C. Seabaugh and Q. Zhang, "Low-Voltage Tunnel Transistors for Beyond CMOS Logic," Proc. IEEE, Vol. 98, No. 12, pp. 2095-2110, Dec., 2010. https://doi.org/10.1109/JPROC.2010.2070470
  2. Z. X. Chen, H. Y. Yu, N. Singh, N. S. Shen, R. D. Sayanthan, G. Q. Lo, and D.-L. Kwong, "Demonstration of Tunneling FETs Based on Highly Scalable Vertical Silicon Nanowires," IEEE Electron Device Lett., Vol. 30, No. 7, pp. 754-756, Jul., 2009. https://doi.org/10.1109/LED.2009.2021079
  3. R. Gandhi, Z. Chen, N. Singh, K. Banerjee, and S. Lee, "CMOS-Compatible Vertical-Silicon-Nanowire Gate-All-Around p-Type Tunneling FETs With $\leq$50-mV/decade Subthreshold Swing," IEEE Electron Device Lett., Vol. 32, No. 11, pp. 1504-1506, Nov., 2011. https://doi.org/10.1109/LED.2011.2165331
  4. A. M. Ionescu and H. Riel, "Tunnel field-effect transistors as energy-efficient electronic switches," Nature, Vol. 479, No. 7373,, pp. 329-337, Nov., 2011. https://doi.org/10.1038/nature10679
  5. Y. Morita, T. Mori, S. Migita, W. Mizubayashi, A. Tanabe, K. Fukuda, T. Masukawa, K. Endo, S. O'uchi, Y. X. Liu, M. Masahara, and H. Ota, "Performance Enhancement of Tunnel Field-Effect Transistors by synthetic Electric Field Effect," IEEE Electron Device Lett., Vol. 35, No. 7, pp. 792-794, Jul., 2014. https://doi.org/10.1109/LED.2014.2323337
  6. L. Liu, D. Mohata, and S. Datta, "Scaling Length Theory of Double-Gate Interband Tunnel Field- Effect Transistors," IEEE Trans. Electron Devices, Vol. 59, No. 4, pp. 902-908, Apr., 2012. https://doi.org/10.1109/TED.2012.2183875
  7. C.-H. Shih and N. D. Chien, "Physical operation and device design of short-channel tunnel fieldeffect transistors with graded silicon-germanium heterojunctions," J. Appl. Phys., Vol. 113, No. 13, pp. 134507-1-134507-7, Apr., 2013. https://doi.org/10.1063/1.4795777
  8. S. Cho, M.-C. Sun, G. Kim, T. I. Kamins, B.-G. Park, and J. S. Harris, Jr., "Design Optimization of a Type-I Heterojunction Tunneling Field-Effect Transistor (I-HTFET) for High Performance Logic Technology," J. Semicond. Technol. Sci., Vol. 11, No. 3, pp. 182-189, Sep., 2011. https://doi.org/10.5573/JSTS.2011.11.3.182
  9. C.-H. Shih and N. D. Chien, "Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors," J. Appl. Phys., Vol. 114, No. 4, pp. 044501-1-044501-7, Jan., 2014. https://doi.org/10.1063/1.4813080
  10. S. Cho, I. M. Kang, T. I. Kamins, B.-G. Park, and J. S. Harris, "Silicon-compatible compound semiconductor tunneling field-effect transistor for high performance and low standby power operation," Appl. Phys. Lett., Vol. 99, No. 24, pp. 243505-1-243505-4, Dec., 2011. https://doi.org/10.1063/1.3670325
  11. ATLAS User's Manual, SILVACO International.
  12. S. Mookerjea, D. Mohata, T. Mayer, V. Narayanan, and S. Datta, "Temperature-Dependent I-V Characteristics of a Vertical $In_{0.53}Ga_{0.47}As$ Tunnel FET," IEEE Electron Device Lett., Vol. 31, No. 6, pp. 564-566, Jun., 2010. https://doi.org/10.1109/LED.2010.2045631
  13. C. D. Bessire, M. T. Bjork, H. Schmid, A. Schenk, K. B. Reuter, and H. Riel, "Trap-Assisted Tunneling in Si-InAs Nanowire Heterojunction Tunnel Diodes," Nano Lett., Vol. 11, No. 10, pp. 4195-4199, Oct., 2011. https://doi.org/10.1021/nl202103a
  14. A. Chattopadhyay and A. Mallik, "Impact of a Spacer Dielectric and a Gate Overlap/Underlap on the Device Performance of a Tunnel Field-Effect Transistor," IEEE Trans. Electron Devices, Vol. 58, No. 3, pp. 677-683, Mar., 2011. https://doi.org/10.1109/TED.2010.2101603
  15. Y. Yang, X. Tong, L.-T. Yang, P.-F. Guo, L. Fan, and Y.-C. Yeo, "Tunneling Field-Effect Transistor: Capacitance Components and Modeling," IEEE Electron Device Lett., Vol. 31, No. 7, pp. 752-754, Jul., 2010. https://doi.org/10.1109/LED.2010.2047240
  16. Q. Zhang, S. Sutar, T. Kosel, and A. Seabaugh, "Fully-depleted Ge interband tunnel transistor: Modeling and junction formation," Solid-State Electron., Vol. 53, No. 1, pp. 30-35, Jan., 2009. https://doi.org/10.1016/j.sse.2008.09.010

피인용 문헌

  1. High-performance sub-10-nm monolayer black phosphorene tunneling transistors pp.1998-0000, 2017, https://doi.org/10.1007/s12274-017-1895-6
  2. Sub-5 nm monolayer black phosphorene tunneling transistors vol.29, pp.48, 2018, https://doi.org/10.1088/1361-6528/aae0cb
  3. Microwave analysis of SiGe heterojunction double-gate tunneling field-effect transistor through its small-signal equivalent circuit pp.10964290, 2019, https://doi.org/10.1002/mmce.21678