프레게의 Grundgesetze 와 그 이후의 시스템에서의 귀납법 고찰

On Induction Principles in Frege's Grundgesetze and in Systems Thereafter

  • 이계식 (한경대학교 컴퓨터웹정보공학과)
  • Lee, Gyesik (Department of Computer & Web Information Engineering, Hankyong National University)
  • 투고 : 2015.11.06
  • 심사 : 2016.02.12
  • 발행 : 2016.02.28

초록

프레게의 Grundgesetze에 소개된 시스템과 그 이후에 집합론 및 유형론에서 중요한 역할을 한 시스템들에서 사용된 귀납법에 대해 살펴본다. 먼저 프레게의 자연수 귀납법에 대한 이해를 살펴 본 후에 현대 집합론과 유형론에서 귀납법이 어떻게 정의 및 활용되는가를 살펴본다. 또한 프레게의 접근방식과 기타 접근방식의 차이점을 predicativity와 impredicativity 차원에서 조명한다.

We compare the approaches to natural numbers and the induction principles in Frege's Grundgesetze and in systems thereafter. We start with an illustration of Frege's approach and then explain the use of induction principles in Zermelo-Fraenkel set theory and in modern type theories such as Calculus of Inductive Constructions. A comparison among the different approaches to induction principles is also given by analyzing them in respect of predicativity and impredicativity.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea[NRF]

참고문헌

  1. 박준용 (2007), "프레게 제한 - 수의 정의와 적용 가능성", 논리연구, 10집 2호. pp. 47-107.
  2. 이종권 (2000), "프레게 산수 체계에서의 페아노 공리의 연역", 논리연구, 3집, pp. 53-93.
  3. Aczel, P. (1977), "An Introduction to Inductive Definitions". In Barwise (1977), pp. 739-201.
  4. Barwise, J. (1977), Handbook of Mathematical Logic, North-Holland.
  5. Boolos, G. (1987), "The Consistency of Frege's Foundations of Arithmetic". In Thomson (1987), pp. 3-20
  6. Boolos, G. (1998), Logic, Logic, and Logic, Harvard University Press.
  7. Church, A. (1940), "A formulation of the simple theory of types", Journal of Symbolic Logic, 5 (2), pp. 56-68. https://doi.org/10.2307/2266170
  8. Coquand, T. (1985), Une Theorie des Constructions, PhD thesis, University Paris VII.
  9. Coquand, T. and Paulin-Mohring, C. (1989), "Inductively defined types", Lecture Notes in Computer Science, 417, pp. 50-56.
  10. Dummett, M. (1991), Frege: Philosophy of Mathematics, Duckworth.
  11. Ebert, P. and Rossberg (2013), M. Gottlog Frege: Basic Laws of Arithmetic, Oxford University Press.
  12. Feferman, S. (2005), "Impredicativity", in S. Shapiro (ed.), The Oxford Handbook of Philosophy of Mathematics and Logic, Oxford University Press, pp. 590-624.
  13. Ferreira, F. (2005), "Amending Frege's Grundgesetze der Arithmetik", Synthese, 147 (1), pp. 3-19. https://doi.org/10.1007/s11229-004-6204-8
  14. Frege, G. (1879), Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Verlag von Nebert.
  15. Frege, G. (1969), Nachgelassene Schriften. In Hermes, H., Kambartel, F. and Kaulbach, F. (Eds.), Felix Meiner.
  16. Girard, J.-Y. (1972), Interpretation fonctionelle et eleimination des coupures dans l'arithmetique d'ordre superieure, PhD thesis, Universite Paris 7.
  17. Girard, J.-Y., Taylor, P. and Lafont, Y. (1989), Proofs and Types, Cambridge University Press.
  18. Godel, K. (1958), "Uber eine bisher noch nicht benutzte Erweiterung des finiten Standpunktes", Dialectica, 12, pp. 280-287. https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
  19. Heck, R. (1995), "Definition by Induction in Frege's Grundgesetze der Arithmetik". In Schirn (1995), pp. 200-233.
  20. Heck, R. (1996), "The consistency of predicative fragments of Frege's Grundgesetze der Arithmetik", History and Philosophy of Logic, 17, pp. 209-220. https://doi.org/10.1080/01445349608837265
  21. Hindley, R. (1997), Basic Simple Type Theory, Cambridge University Press.
  22. Korte, T. (2010), "Frege's Begriffsschrift as a lingua characteristica", Synthese, 174 (2), pp. 283-294. https://doi.org/10.1007/s11229-008-9422-7
  23. Lee, G. and Werner, B. (2011), "Proof-irrelevant model of CC with predicative induction and judgmental equality", Logical Methods in Computer Science, 7 (4:05), pp. 1-25.
  24. Martin-Lof, P. (1975), "An intuitionistic theory of types: Predicative Part", in H. E. Rose and J. C. Sheperdson (eds.), Proceedings of Logic Colloquium 73', North-Holland, pp. 73-118.
  25. Martin-Lof, P. (1980), Intuitionistic Type Theory, Bibliopolis.
  26. Paulin-Mohring, C. (1997), Le systeme Coq, These d'habilitation, ENS Lyon.
  27. Pfenning, F. and Paulin-Mohring, C. (1990), "Inductively defined types in the calculus of constructions", Lecture Notes in Computer Science, 442, pp. 208-228.
  28. Reynolds, J. (1974), "Towards a theory of type structure", Lecture Notes in Computer Science, 19, pp. 408-425.
  29. Russell, B. (1908), "Mathematical logic as based on the theory of types", American Journal of Mathematics, 30 (3), pp. 222-262. https://doi.org/10.2307/2369948
  30. Schirn, M. (1995), Frege: Tradition and Influence, de Gruyter,
  31. Tait, W.W. (1967), "Intensional interpretations of functionals of finte type I", Journal of Symbolic Logic, 32 (2), pp. 198-212. https://doi.org/10.2307/2271658
  32. Thomson, J. J. (1987), On being and saying: Essays for Richard Cartwright, MIT Press.
  33. Weber, H. (1892), "Leopold Kronecker", Jahresbericht der Deutschen Mathematiker-Verninigung, 2, pp.5-23.
  34. Wehmeier, K. F. (1999), "Consistent fragments of grundgesetze and the existence of non-logical objects", Synthese, 121, pp. 309-328. https://doi.org/10.1023/A:1005203526185
  35. Werner, B. (1997), "Sets in Types, Types in Sets", Lecture Notes in Computer Science, 1281, pp. 530-546.
  36. Whitehead, A. and Russell, B. (1910, 1912, 1913), Principia Mathematica (3 volumes), Cambridge University Press.
  37. Zermelo, E. (1908), "Untersuchungen uber die Grundlagen der Mengenlehre I", Mathematische Annalen, 65 (2), pp. 261-281. https://doi.org/10.1007/BF01449999