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1. Introduction

During the 19th century, there was an increasing tendency 
towards exacter investigation in the foundation of mathematics. 
Around the turn of the 20th century, logicians started to realize 
that ordinary mathematical arguments can be represented in formal 
axiomatic systems. One of the main figures in this tendency was 
Gottlob Frege. His concern was twofold: whether arithmetical 
judgments can be proved in a purely logical manner and how far 
one could go in arithmetic by merely using the laws of logic. 

Beginning with Begriffsschrift (Frege 1879), Frege's main 
concern was to reduce everything used in arithmetic to pure logic, 
and for that purpose he invented a special kind of language1) 
where statements (of arithmetic) can be proved as true based only 
upon general logical laws and definitions. In the two volumes of 
Grundgesetze der Arithmetik (1893, 1903) he showed for instance 
how to define natural numbers and proved that the basic axioms 
of arithmetic can be derived. 

There is a point by which one can distinguish Frege's approach 
to natural numbers from those of other logicians. It is the way of 
dealing with the principle of induction (  ). In Fregean 
Arithmetic,    is an immediate consequence of the definition of 
natural numbers while e.g. for Dedekind, Peano, and Hilbert it is 

 1) “I wanted to supplement the formula-language of mathematics with signs for 
logical relations so as to create a concept-script which would make it 
possible to dispense with words in the course of proof, and thus ensure the 
highest degree of rigour whilst at the same time making the proofs as brief 
as possible.” Cf. [Frege 1969, p.53].
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postulated as an axiom. One could say Frege accepted    as a 
general principle when doing arithmetic. For more about Frege's 
understanding of numbers we refer to [박준용 2007].

In this paper, we compare the approaches to natural numbers 
and the induction principles in Frege’s Grundgesetze and in 
systems thereafter. We start with an illustration of Frege’s 
approach and then explain the use of induction principles in 
Zermelo-Fraenkel set theory and in modern type theories such as 
Calculus of Inductive Constructions. A comparison among the 
different approaches to induction principles is also given by 
analyzing them in respect of predicativity and impredicativity. 

2. Induction principle for Frege

Frege creates in Begriffsschrift a special language where 
statements (of arithmetic) can be proved to be true based only 
upon general logical laws and definitions.2) The Begriffsschrift can 
be used as a basis for forming characteristic languages which 
have intuitive content. Its extension for arithmetic, for example, 
happens by adding arithmetic concepts and axioms as further 
principles. 

 2) “… in a lingua characteristica the relationship between an expression and 
its content is supposed to be arbitrary at most at level of primitive 
expressions and concepts. Expressions of complex concepts should be built 
up from simple ones in a systematic manner so that to know the content of 
any expression of the lingua characteritica, one needs to know only 
fundamental terms and the method of their combination. The Begriffsschrift 
is such a language.” (Korte 2010, p.292)
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In the first volume of Grundgesetze, Frege presented such an 
extension where arithmetic concepts can be defined and truths of 
propositions can be formally proved. Unfortunately, the formal 
system of Grundgesetze is inconsistent. It is because Russell's 
Paradox can be derived from the infamous Axiom V:

     ↔ ∀   

Here   denotes the value-range3) of the function  . This 
axiom asserts that the value-range of the function   is identical 
to the value-range of the function   if and only if   and   map 
every object to the same value. 

Although the inconsistency is widely known, the Grundgesetze 
contains all the essential steps necessary to prove the fundamental 
propositions of arithmetic from a single, nearly consistent 
principle. This principle, known as Hume's Principle, asserts that 
for any concepts   and  , the number of objects satisfying   is 
equal to that of objects satisfying   if and only if there is an 
one-to-one correspondence between the objects satisfying   and 
the objects satisfying  . Hume's Principle is nearly consistent in 
the sense that Fregean Arithmetic4) is equi-consistent with 
second-order arithmetic.

[Heck 1995], for example, points out that Frege's essential use 
of Axiom V is made only in the proof of Hume's Principle and 

 3) Value-range of a function can be thought of its graph in the set-theoretic 
sense.

 4) Fregean Arithmetic is the second-order theory whose sole non-logical axioms 
is Hume's Principle. For a proof of the equi-consistency, see [Boolos 1987].
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that Frege's Theorem  holds, i.e. the five Dedekind-Peano axioms 
for number theory can be derived from Hume's Principle in 
second-order logic. The five Dedekind-Peano axioms are the 
following:

• Zero is a number.
• Zero isn't the successor of any number.
• No two numbers have the same successor.
• The principle of mathematical induction holds.
• Every number has a successor.

Among the five axioms, however, the principle of mathematical 
induction is a trivial consequence of the definition of natural 
numbers. To understand why, we need to know two concepts: the 
predecession relation and the ancestral of a relation.  

2.1. Natural numbers and induction

To define natural numbers, Frege starts with the definition of 
predecession relation.   (immediately) precedes   when there is a 
concept   and an object   such that: (a)   satisfies  , (b)   is 
the number of objects satisfying   and (c)   is the number of 
objects other than   satisfying  . In formal terms:

  ∃ ∃    ∧

                ∧

               ∧  
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Here       denotes the number (cardinality) of objects 
satisfying  . 

Frege makes use also of the definition of the (strong) ancestral 
of a relation. Given a relation  ,   comes before   in the 

-series when   satisfies all those -hereditary concepts   which 
is satisfied by every object to which   is -related. In formal 
terms:

   ∀ ∀     →   ∧  →   

where

  ∀    ∧   →   .

The weak ancestral of a relation is defined as follows:   is a 
member of the -series beginning with   when either   comes 
before   in the -series or    . In formal terms:

     ∨   

The two concepts, predecession and weak ancestral play a very 
important role for Frege in defining natural numbers. First, he 
defined the number   as the number of objects which are not 
self-identical:

         

The concept of a natural number is then now defined as:
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ℕ      .

So an object   is a natural number when it is a member of the 
 -series beginning with  . Note that the principle of 
mathematical induction follows immediately as a tautology:

   ∀    →  → ∀ ℕ  →  

Note also that we may define the first transfinite number as

∞     ℕ 

called “Endloss” (“endless” in English) in Grundgesetze (Vol. I, p. 
150). For a detailed discussion about Fregean Arithmetic, we refer 
to [이종권 2000].

2.2. Definition by induction

[Heck 1995] notices also that Theorem 256 in Grundgesetze 
(Vol. I, p. 197) is actually a version of what is known as the 
recursion theorem up to  5) which is usually stated in modern 
notation as follows: 

Given a function    →   and an object  ∈  , there is a 
unique function   ℕ →   such that    and 
   . 

 5)   denotes the first infinite, countable ordinal.
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where   ℕ → ℕ  is the successor function whose existence 
is guaranteed by the validity of Frege’s theorem .

One of the most famous examples is the definition of addition 
where    :

   

      

3. Natural numbers and induction in ZF set theory

Zermelo-Fraenkel (ZF) set theory consists of the following 
axioms:

(Comp) ∀∃∀   ∈  ↔  ∈  ∨ 

(Found) ∀ ∃ ∈  → ∃  ∈  ∧ ∃  ∈  ∧  ∈ 

(Ext) ∀   ∀  ∈  ↔  ∈   →    

(Empty) ∃∀  ∈ 

(Infty) ∃∅ ∊ ∧∀ ∊  → ∪∊ 

(Pair) ∀ ∃   ∈  ∧  ∈  

(Union) ∀∃∀   ∈  ↔ ∃ ∈   ∈  ∧  ∈ 

(Power) ∀∃∀   ∈  ↔  ⊆  

(Coll) ∀  ∀ ∈ ∃   → ∃∀ ∈ ∃ ∈   

Here  denotes the singleton containing as elements only the 
set  , and ∅  denotes the empty set whose existence is 
guaranteed by the axiom (Empty).

It is well known that ZF is a system sufficient for 
guaranteeing the existence of natural numbers, the set of all 
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natural numbers, and definition by induction. Here we summarize 
which axioms play the main role.

3.1. Natural numbers

In ZF set theory, the axiom (Infty) mimics Kronecker's 
understanding of natural numbers: God made the integers, all else 
is the work of man.6) Indeed, the natural numbers are usually 
defined by

  ∅  and    ∪ ,

and the set ℕ  of all natural numbers can be defined as the 
smallest set satisfying (Infty) whose existence can be assured by 
the comprehension axiom scheme (Comp).

One should notice however that the definition of natural 
numbers implicitly assume the existence of the concept of natural 
numbers. 

3.2. Transfinite induction and recursion

There is no axiom explicitly mentioning induction. However, it 
is well known that in ZF, the principle of transfinite induction 
(TI) along ordinals is allowed: 

 6) [Weber 1893] writes in page 15 that Kronecker made this legendary remark 
during a lecture to the Berliner Naturforscher-Versammlung in 1886. 
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(TI)  →

∀ →   →

∀∈Lim∀∈  →  →

∀ ∈  

Here Lim is the class of limit ordinals and  is the class of 
all ordinals.

Moreover, the principle of transfinite recursion (TR) is also 
available: Let   be the class of all sets. Given a set  ∈  , and 
two class functions     →  , there is a unique function 
   →   such that

(TR)   

   

   ↾,

where   stands for an infinite ordinals and ↾  denotes the 
function      which is the restriction of   to the 
domain  . 

4. Inductive definitions in logic and mathematics

In everyday exercise of logic and mathematics we often 
encounters definitions by induction. For example, the terms in the 
language of first-order logic is defined inductively. Given a 
first-order language  , the set of terms is defined as follows:
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• Variables and constants are terms.
• If     are terms and   is an -ary function symbol, 

then     is a term.

Then we talk about the set of all terms in the language  . 
This kind of construction can be found everywhere in logic and 

mathematics. Below are some examples from logic and 
mathematics.

• The inductive definition of formulas of the language  .
• The inductive definition of derivation as a predicate for 

provable formulas.
• The smallest subgroup containing a subset of a group.
• The construction of a basis for a vector space.

It remains, however, the question of the existence of sets 
containing all and only the objects described by the inductive 
definitions. Does the ZF set theory provide the foundation for it? 
How are the principle of transfinte induction and the principle of 
transfinite recursion related to this question? In the rest of this 
paper, we will introduce two foundational approaches to these 
questions: set-theoretic one and type-theoretic one.

4.1. Set-theoretic approach: Aczel’s rule sets

Note that definition by induction typically has the following 
form
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(*)                      

 ⋯ 

where  ≧   and  ⋯   are premisses and  is the 
conclusion of the instance of a rule. In case    , there are no 
premisses. 

Let’s, for example, have a careful look at the definition of 
terms in a first-order language  :

a) Variables and constants are terms.
b) If     are terms and   is an -ary function symbol, 

then     is a term.

For the rule a) we have     and  says that variables and 
constants are terms. In case of b), we have 

•      ,
• for each  ≦ ,  says that  is  a term, 
•     says that   is an -ary function, and
•  says that     is a term.

[Aczel 1977] notices that the form (*) corresponds exactly to 
his concept of rules. A rule is a pair   where   is a set, 
called the set of premisses and   is the conclusion. The rule 
  will usually be written  →  . A rule set is a set of 
rules. Given a rule set  , a set   is called  -closed if, for any 
 →  ∈  ,  ∊   follows from  ⊆  , that is, if premisses 
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are in   so is the conclusion. Note that there is the least 

-closed set 

      is  -closed .

In fact, each rule set   generates a monotone operator 

      there exists some  ⊆  such that  →  ∈ 

such that   is the least fix-point of  , i.e.      . 
Furthermore, it is well known that using (TR) one can construct 
  as follows


   ∅


     




    

  




and   
  where   denote the least ordinal such that 


  

  


 . 

Example 1. The set ℕ of natural numbers is 
, where

  ∅ →  ∪ →  ∪    arbitraryset

Here,   stands for ∅ . 
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Example 2. Given a group   and an arbitrary subset  ⊆  , 
the smallest subgroup   of   such that  ⊆   is 

, where

  ∅ →    ∈  ∪  ∪  →     ∈ 

Here,   is the identity and    is the inverse of   in  . 

Example 3. The Borel sets of reals are elements of 
, where

  ∅ →    ⊆ ℝ and open  ∪

   ∈ ℕ→   ⊆ ℝ

4.2. Type-theoretic approach: Calculus of Inductive
Constructions

In this section we give a very short history of type theory 
focussed on inductive types. It is very likely that any trial to be 
more specific would go far beyond the scope of this paper. 

It is widely known that type theory can be used as a 
foundation for mathematics. Indeed, Russel presented type theory 
as such in his 1908 paper. Interestingly, Russell’s paper appeared 
the same year as [Zermelo 1908] which presents set theory as a 
foundation for mathematics.

The type structure in Russell’s Principia Mathematica is 
elegantly represented in [Church 1940] based on -calculus. 
Church’s -calculus provides a general notation for functions:
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       

• every variable is a function symbol;
• every juxtaposition of two function symbols is a function 

symbol;
• every   is a function symbol;
• there are no other function symbols.

Curry had similar ideas before the publication of Church’s 
paper as is well presented in [Hindley 1997]. Curry’s idea is to 
look at types as predicates over lambda terms, writing     to 
express that   satisfies the type  . 

Gödel used an extended type theory, called Gödel’s  , in his 
Dialectica interpretation (Gödel 1958) to show the consistency of 
first-order arithmetic. The system   is equipped with an extra 
term constructor to deal with the principle of induction in the 
Peano arithmetic.

On the other hand, Girard’s System   in [Girard 1972] 
contains no extra term constructor for recursor, but can internally 
build it. The System   is a type system with polymorphism.7) 
Syntactically, the system is very simple and contains symbols only 
for implication and universal quantification. However, Girard 
showed that his system is an extension of Gödel's   and that 
second-order arithmetic can be interpreted in his system. In 
particular, all the logical connectives, natural numbers, and a 

 7) Girard proved the consistency of his system using the reducibility method, 
that had been introduced by [Tait 1967] while analysing [Gödel 1958]. A 
similar system was introduced independently by [Reynolds 1974] while 
analysing the notion of polymorphism in computer science.
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recursor can be encoded nicely as is well demonstrated in [Girard 
et al. 1989]. 

Martin-Löf’s type theory (MLTT in short, [Martin-Löf 1975] 
and [Martin-Löf 1980]) is a constructive formalism of type theory 
equipped with a facility to deal with inductive definitions. MLTT 
with -types, the type of well-founded trees, can build the 
notion of inductive types as a derived notion. 

People, however, recognized that it is more elegant to have the 
notion of inductive types in the core of the formal system itself, 
rather to build it as a derived notion. [Coquand and 
Paulin-Mohring 1989] introduces an extension of Church’s simple 
type theory where inductively defined types are added. Later, 
[Pfenning and Pauling-Mohring 1990] uses another approach to 
extend Coquand’s Calculus of Constructions (Coquand 1985) to 
deal with inductively defined types in a more simple and elegant 
style. They showed that all primitive recursive functionals over 
the inductively defined types can also be represented in their 
system. This system is further refined to the Calculus of Inductive 
Constructions and used as the underlying formal language of the 
proof assistant Coq, cf. [Paulin-Mohring 1997]. 

Coq is a computer software which allows to express 
mathematical assertions, mechanically checks proofs of these 
assertions, and helps to find formal proofs. Further information 
about Coq can be found in its homepage.8) Here we just 
demonstrate how to inductively define the type of natural numbers 
in Coq:

 8) https://coq.inria.fr
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Inductive nat : Set :=

| 0 : nat

| S : nat →  nat.

The word Inductive is a keyword denoting that nat is the type 
of objects which are going to be defined inductively. The type 
nat is supposed to be the type of objects which can be used as 
natural numbers. There are two constructors to build the objects 
of the inductive type nat. The first one is 0, representing the 
number zero. And it is directly declared to be an object of type 
nat. The second constructor S stands for the successor function 
and is of type nat to nat: Given an arbitrary object n of type 
nat, S n is another object of type nat. 

The aforementioned example is, of course, a very simple one. 
Here we just mention that Coq is capable of much more. In fact, 
it is at least as strong as the Zermelo-Fraenkel set theory with 
very big cardinals. Further information about the strength of Coq 
can be found in [Werner 1997]. [Lee and Werner 2011] explains 
how to set-theoretically understand inductive types in Coq. 

5. Predicative vs. impredicative definition of numbers

In this section we discuss Frege’s use of impredicativity in the 
definition of natural numbers. Note first that the strong ancestral 

   of a relation   is the same as the transitive closure    of 
 . To see this, we first recall the definition of the two concepts. 

First, given a (binary) relation  , the strong ancestral is 
defined as follows:
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   ∀ ∀     →   ∧  →   

where

  ∀    ∧   →   .

Secondly, the transitive closure    is the smallest transitive 
relation containing  . The transitive closure    always exists 
and can be defined as follows:

   
 ≧ 

  , 

where   is inductively defined by

   ↔   , and
     ↔ ∃      ∧    .

It is obvious that    is transitive and contains . Moreover,    
contains   : Assume      holds. We should show that 
     holds, too. For this, take   ≡     . Then the 
premisses ∀    →    and  of      
with   ≡      hold obviously. So      holds.

This proof of the equivalence of the two concepts ‘ancestral’ 
and ‘transitive closure’ implies that Frege’s concept of ancestral, 
hence the definition of natural numbers are all impredicative. Note 
that impredicativity is one of main factors in Frege’s work. It 
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would be hardly possible to reconstruct Frege’s work without it. 
More about Frege’s use of impredicativity we refer to [Ferreira 
2005] and more about impredicativity in general to [Feferman 
2005].

This kind of impredicative definition of natural numbers is also 
used in Girard’s System  , cf. [Girard et al. 1989]. On the other 
hand, Gödel’s   and the Calculus of Inductive Constructions 
provide facilities to deal with natural numbers in a predicative 
way as demonstrated in the previous section. 

[Dummett 1991] asks in the opening of Chapter 17: “How did 
the serpent of inconsistency enter Frege’s paradise?” He blames 
impredicativity in Frege’s system as the main cause of its 
inconsistency. Although Dummett’s blame may be unfair for 
impredicativity9), his view is later in some way confirmed by 
[Heck 1996] who introduces a consistent, ramified predicative 
second-order fragment of Frege’s system. See also [Wehmeier 
1999] how one can extend Heck’s predicative system in a 
consistent way. 

6. Conclusion

Frege’s system in Grundgesetze is basically second-order logic 
augmented by a single non-logical axiom called Axiom V. Despite 
the inconsistency, the Grundgesetze contains all the essential steps 
necessary to prove the fundamental propositions of arithmetic, 

 9) Unfair in the sense that systems like System   and Calculus of Inductive 
Constructions are consistent impredicative systems. 



Gyesik Lee102

including the principle of induction on natural numbers, from a 
single principle known as Hume's Principle. We discussed how 
Frege realized in a purely logical way the concept of natural 
numbers and the principle of induction. Moreover, we also 
illustrated the impact of his understanding of natural numbers and 
induction on the development of the modern logic systems both 
in set theory and type theory.

It would be interesting to analyze Dummett’s blame on 
impredicativity for the inconsistency of Frege’s system in 
Grundgesetze. Although some answers are already provided, an 
ultimate answer is still missing. 
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부 록144

프레게의 Grundgesetze 와 그 이후의 시스템에서의 
귀납법 고찰

이 계 식

프레게의 Grundgesetze에 소개된 시스템과 그 이후에 집합론 및

유형론에서 중요한 역할을 한 시스템들에서 사용된 귀납법에 대해

살펴본다. 먼저 프레게의 자연수 귀납법에 대한 이해를 살펴 본 후

에 현대 집합론과 유형론에서 귀납법이 어떻게 정의 및 활용되는가

를 살펴본다. 또한 프레게의 접근방식과 기타 접근방식의 차이점을

predicativity와 impredicativity 차원에서 조명한다.

주요어: 귀납법, 프레게, Grundgesetze, 집합론, 유형론


