DOI QR코드

DOI QR Code

부레옥잠을 이용한 Lactobacillus spp.의 젖산 생산

Production of Lactic Acid from Water Hyacinth by Lactobacillus spp.

  • Jullihar, Randy (Department of Biological Engineering, Inha University) ;
  • Noh, Yong Ho (Department of Biological Engineering, Inha University) ;
  • Park, Hye Min (Department of Biological Engineering, Inha University) ;
  • Yun, Hyun Shik (Department of Biological Engineering, Inha University)
  • 투고 : 2016.02.23
  • 심사 : 2016.03.22
  • 발행 : 2016.03.31

초록

Lactic acid fermentations were conducted using water hyacinth. It is known that the pretreatment and enzyme hydrolysis process optimize the potential of water hyacinth. Lactic acid produced by using lactic acid bacteria. All cells were grown at $37^{\circ}C$ and initial pH 5.5. Lactic acid production was measured by HPLC. All Lactobacillus strains could produce lactic acid from pretreated water hyacinth. The highest lactic acid was achieved when lactic acid fermentation was carried out by L. delbrueckii for D-form and L. helveticus for L-form lactic acid production. The lactic acid concentration was 10.70 g/L by L. delbrueckii and it converted glucose in the medium to lactic acid, almost perfectly. Lactic acid production became higher when fermentation was carried out at a controlled pH 5.5. Lactic acid yield and productivity were 0.52 g/g and 0.19 g/L/h for L. helveticus, while L. delbrueckii was 0.64 g/g and 0.27 g/L/h. This study showed that water hyacinth medium could be alternative medium which can replace the complex and expensive medium for growing Lactobacillus strains in production of lactic acid.

키워드

참고문헌

  1. Kharas, G. B., F. Sanchez-Riera, and D. K. Severson (1994) Polymers of lactic acid. pp. 93-137. In: D. P. Mobely (eds.). Plastics from microbes: microbial synthesis of polymers and polymer precursors. Carl Hanser Publishers, Munich, Germany.
  2. Datta, R., S. P. Tsai, P. Bonsignore, S. H. Moon, and J. R. Frank (1995) Technological and economic potential of poly (lactic acid) and lactic acid derivatives. FEMS Microbiol. Rev. 16: 221-231. https://doi.org/10.1111/j.1574-6976.1995.tb00168.x
  3. Miura, S., T. Arimura, N. Itoda, L. Dwiarti, J. B. Feng, C. H. Bin, and M. Okabe (2004) Production of L-lactic acid from corncob. J. Biosci. Bioeng. 97: 153-157. https://doi.org/10.1016/S1389-1723(04)70184-X
  4. Cheng, P., R. Mueller, S. Jaeger, R. Bajpai, and E. Iannotti (1991) Lactic acid production from enzyme-thinned corn starch using Lactobacillus amylovorus. J. Industrial Microbiol. 7: 27-34. https://doi.org/10.1007/BF01575599
  5. Konings, W. N., J. Kok, O. P. Kuipers, and B. Poolman (2000) Lactic acid bacteria: the bugs of the new millennium. Curr. Opin. Microb. 3: 276-282. https://doi.org/10.1016/S1369-5274(00)00089-8
  6. Vickroy, T. B. (1985) Lactic acid. pp. 761-776. Pergamon Press New York, NY, USA.
  7. Leroy, F. and L. D. Vuyst (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15: 67-78. https://doi.org/10.1016/j.tifs.2003.09.004
  8. Wood, B. J. and W. Holzapfel (1995) The genera of lactic acid bacteria. pp. 1-6. Blackie Academic and Professional, London, UK.
  9. Nigam, J. (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J. Biotechnol. 97: 107-116. https://doi.org/10.1016/S0168-1656(02)00013-5
  10. Sharma, A. (1971) Eradication and utilization of water hyacinth, a review. Curr. Sci. 40: 51-55.
  11. Tripathi, B. and S. C. Shukla (1991) Biological treatment of wastewater by selected aquatic plants. Environ. Pollut. 69: 69-78. https://doi.org/10.1016/0269-7491(91)90164-R
  12. Chang, C. E., S. C. Kim, J. S. So, and H. S. Yun (2001) Cultivation of Lactobacillus crispatus KLB46 isolated from human vagina. Biotechnol. Bioprocess Eng. 6: 128-132. https://doi.org/10.1007/BF02931958
  13. Chang, C. E., S. I. Pavlova, L. Tao, E. K. Kim, S. C. Kim, H. S. Yun, and J. S. So (2002) Molecular identification of vaginal Lactobacillus spp. isolated from Korean women. J. Microbiol. Biotechnol. 12: 312-317.
  14. Schepers, A. W., J. Thibault, and C. Lacroix (2002) Lactobacillus helveticus growth and lactic acid production during pH-controlled batch cultures in whey permeate/yeast extract medium. Part I. multiple factor kinetic analysis. Enzyme Microb. Technol. 30: 176-186. https://doi.org/10.1016/S0141-0229(01)00465-3
  15. Giraud, E., B. Lelong, and M. Raimbault (1991) Influence of pH and initial lactate concentration on the growth of Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 36: 96-99. https://doi.org/10.1007/BF00164706
  16. Otsuka, M., S. Okada, T. Uchimura, and K. Komagata (1994) A simple method for the determination of stereoisomers of lactic acid by HPLC using an enantiomeric resolution column, and its application to identification of lactic acid bacteria. J. Fermentation Bioeng. 77: 459.
  17. Manome, A., S. Okada, T. Uchimura, and K. Komagata (1998) The ratio of L-form to D-form of lactic acid as a criteria for the identification of lactic acid bacteria. J. Gen. Appl. Microbiol. 44: 371-374. https://doi.org/10.2323/jgam.44.371
  18. Hofvendahl K. and B. Hahn-Hagerdal (1997) L-lactic acid production from whole wheat flour hydrolysate using strains of Lactobacilli and Lactococci. Enzyme Microb. Technol. 20: 301-307. https://doi.org/10.1016/S0141-0229(97)83489-8
  19. Kumar, A., L. Singh, and S. Ghosh (2009) Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis. Bioresource Technol. 100: 3293-3297. https://doi.org/10.1016/j.biortech.2009.02.023
  20. Kashket, E. R. (1987) Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol. Lett. 46: 233-244. https://doi.org/10.1111/j.1574-6968.1987.tb02463.x
  21. Gardner, N. J., T. Savard, P. Obermeier, G. Caldwell, and C. P. Champagne (2001) Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet and onion vegetable mixtures. Int. J. Food Microbiol. 64: 261-275. https://doi.org/10.1016/S0168-1605(00)00461-X
  22. Aksu. Z., and T. Kutsal (1986) Lactic acid production from molasses utilizing Lactobacillus delbrueckii and invertase together. Biotechnol. Lett. 8: 157-160. https://doi.org/10.1007/BF01029370
  23. Dumbrepatil A., M. Adsul, S. Chaudhari, J. Khire, and D. Gokhale (2008) Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Appl. Environ. Microbiol. 74: 333-335. https://doi.org/10.1128/AEM.01595-07
  24. Sreenath H. K., A. B. Moldes, R. G. Koegel, and R. J. Straub (2001) Lactic acid production by simultaneous saccharification and fermentation of alfalfa fiber. J. Biosci. Bioeng. 92: 518-523. https://doi.org/10.1016/S1389-1723(01)80309-1
  25. Tanaka T., M. Hoshina, S. Tanabe, K. Sakai, S. Ohtsubo, and M. Taniguchi (2006) Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresource Technol. 97: 211-217. https://doi.org/10.1016/j.biortech.2005.02.025
  26. Adsul M., J. Khire, K. Bastawde, and D. Gokhale (2007) Production of lactic acid from cellobiose and cellotriose by Lactobacillus delbrueckii mutant Uc-3. Appl. Environ. Microbiol. 73: 5055-5057. https://doi.org/10.1128/AEM.00774-07
  27. Calabia B. P., and Y. Tokiwa (2007) Production of D-lactic acid from sugarcane molasses, sugarcane juice and sugar beet juice by Lactobacillus delbrueckii. Biotechnol. Lett. 29: 1329-1332. https://doi.org/10.1007/s10529-007-9408-4