References
- Khan, A. G. (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elem. Med. Biol. 18: 355-364. https://doi.org/10.1016/j.jtemb.2005.02.006
- Koo, S. Y. and K. S. Cho (2006) Interaction between plants and rhizobacteria in phytoremediation of heavy metal-contaminated soil. Kor. J. Microbiol. Biotechnol. 2: 83-93.
- Nehl, D. B., S. J. Allen, and J. F. Brown (1996) Deleterious rhizosphere bacteria an intergrating perspective (review). Appl. Soil Ecol. 5: 1-20.
- Glick, B. R. (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol. 41: 109-117. https://doi.org/10.1139/m95-015
- Johnson, D. L., D. R. Anderson, and S. P. McGrath (2005) Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol. Biochem. 37: 2334-2336. https://doi.org/10.1016/j.soilbio.2005.04.001
- Golubev, S. N., A. V. Schelud’ko, A. Y. Muratova, O. E. Makarov, and O. V. Turkovskaya (2009) Assessing the potential of rhizobacteria to survive under phenanthrene pollution. Water Air Soil Poll. 198: 5-16. https://doi.org/10.1007/s11270-008-9821-x
- So, J. H., D. J. Kim, J. H. Shin, C. B. Yu, and I. K. Rhee (2009) Isolation and characterization of Bacillus cereus A-139 producing auxin from east coast sand dunes. Kor. J. Environ. Agr. 28: 447-452. https://doi.org/10.5338/KJEA.2009.28.4.447
- Schnoor, J. L. (1997) Phytoremediation: Technology Evaluation Report. TE-98-01. Groundwater remediation technologies analysis center, Iowa City, Iowa, USA.
- Ahn, J. H., K. H. Son, H. Y. Sohn, and S. T. Kwon (2005) In vitro culture of adventitious roots from Dioscorea nipponica Makino for the production of steroidal saponins. J. Plant Biotechnol. 32: 217-223. https://doi.org/10.5010/JPB.2005.32.3.217
- Ahn, J. W. and J. Y. Yoon (2008) Quality characteristics of noodles added with Dioscorea japonica powder. Korean J. Food Sci. Technol. 40: 528-533.
- Ryu, H. Y., Y. S. Kim, S. J. Park, B. H. Lee, S. T. Kwon, and H. Y. Sohn (2006) Isolation and characterization of yam putrefactive psychrotrophic bacteria from rotted yam. Kor. J. Microbiol. Biotechnol. 34: 109-114.
- Kwon, C. S., H. Y. Sohn, S. H. Kim, J. H. Kim, K. H. Son, J. S. Lee, J. K. Lim, and J. S. Kim (2003) Anti-obesity effect of Dioscorea nipponica Makino with lipase-inhibitory activity in rodents. Biosci. Biotechnol. Biochem. 67: 1451-1456. https://doi.org/10.1271/bbb.67.1451
- Ha, Y. D., S. P. Lee, and Y. G. Kwak (1998) Removal of heavy metal and ACE inhibition of Yam mucilage. J. Korean Soc. Food Sci. Nutr. 27: 751-755.
- Lee, J. G. (2014) Antioxidant activities and monacolin K production on solid-state fermentation of diverse Yam by Aspergillus species strain. Kor. J. Microbiol. 50: 53-59. https://doi.org/10.7845/kjm.2014.4004
- Hong, S. H. and E. Y. Lee (2014) Vegetation restoration and prevention of coastal sand dunes erosion using ion exchange resins and the plant growth-promoting rhizobacteria Bacillus sp. SH1RP8 isolated from indigenous plants. Int. Biodeter. Biodegr. 95: 262-269. https://doi.org/10.1016/j.ibiod.2014.05.026
- Dell’Amico, E., L. Cavalca, and V. Andreoni (2005) Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol. Ecol. 52: 153-162. https://doi.org/10.1016/j.femsec.2004.11.005
- Hong, S. H., H. W. Ryu, J. Kim, and K. S. Cho (2011) Rhizoremediation of diesel-contaminated soil using the plant growth-promoting rhizobacterium Gordonia sp. S2RP-17. Biodegradation 22: 593-601. https://doi.org/10.1007/s10532-010-9432-2
- Ma, Y., M. Rajkumar, and H. Freitas (2009) Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 75: 719-725. https://doi.org/10.1016/j.chemosphere.2009.01.056
- Xie, H., J. J. Pasternak, and B. R. Glick (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr. Microbiol. 32: 67-71. https://doi.org/10.1007/s002849900012
- Arora, P. K. and H. Bae (2014) Identification of new metabolites of bacterial transformation of indole by gas chromatography-mass spectrometry and high performance liquid chromatography. Int. J. Anal. Chem. 2014: 1-5.
- Banerjee, S., R. Palit, C. Sengupta, and D. Standing (2010) Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Aust. J. Crop Sci. 4: 378-383.
- Forni, C., J. Riov, M. G. Caiolai, and E. Tel-Or (1992) Indole-3-acetic acid (IAA) production by Arthrobacter species isolated from Azolla. J. Gen. Microbiol. 138: 377-381. https://doi.org/10.1099/00221287-138-2-377
- Pennazio, S. and P. Roggero (1992) Effect of Cd and nickel on ethylene biosynthesis in soybean. Biol. Planta. 34: 345-349. https://doi.org/10.1007/BF02925896
- Glick, B. R. (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21: 383-393. https://doi.org/10.1016/S0734-9750(03)00055-7
- Belimov, A. A., V. I. Safronova, T. A. Sergeyeva, T. N. Egorova, V. A. Matveyeva, V. E. Tsyganov, A. Y. Borisov, I. A. Tikhonovich, C. Kluge, A. Preisfeld, K.-J. Dietz, and V. V. Stepanok (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 47: 642-652. https://doi.org/10.1139/w01-062
- Tiwari, S., P. Singh, R. Tiwari, K. K. Meena, M. Yandigeri, D. P. Singh, and D. K. Arora (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol. Fertil. Soils 47: 907-916. https://doi.org/10.1007/s00374-011-0598-5
- Barnawal, D., N. Bharti, D. Maji, C. S. Chanotiya, and A. Kalra (2014) ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J. Plant Physiol. 171: 884-894. https://doi.org/10.1016/j.jplph.2014.03.007
-
Lee, M. J., T. H. Kim, B. Min, and S. J. Hwang (2012) Sodium (
$Na^+$ ) concentration effects on metabolic pathway and estimation of ATP use in dark fermentation hydrogen production through stoichiometric analysis, J. Environ. Manage. 108: 22-26. https://doi.org/10.1016/j.jenvman.2012.04.027 - Madigan, M. T., J. M. Martinko, P. V. Dunlap, and D. P. Clark (2009) Brock biology of microorganisms. 12th ed., pp. 41-45. Pearson Education, Benjamin Cummings, NY, USA.
- Lee, E. Y. and S. H. Hong (2013) Assessment of the changes in the microbial community in alkaline soils using biolog ecoplate and DGGE. KSBB J. 28: 275-281. https://doi.org/10.7841/ksbbj.2013.28.5.275
- Aslantas, R., R. Cakmakci, and F. Sahin (2007). Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci. Hortic. 111: 371-377. https://doi.org/10.1016/j.scienta.2006.12.016
- Nezarat, S. and A. Gholami (2009) Screening plant growth promoting rhizobacteria for improving seed germination, seedling growth and yield of maize, Pakistan. J. Biol. Sci. 12: 26-32.
- Kloepper, J. W., A. Gutierrez-Estrada, and J. A. Mclnroy (2007) Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Can. J. Microbiol. 53: 159-167. https://doi.org/10.1139/w06-114
- Lugtenberg, B. and F. Kamilova (2009) Plant-growth-promoting rhizobacteria, Annu. Rev. Microbiol. 63: 541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
- Shaharoona, B., M. Arshad, and A. Khalid (2007) Differential response of etiolated pea seedlings to inoculation with rhizobacteria capable of utilizing 1-aminocyclopropane-1-carboxylate or L-methionine. J. Microbiol. 45: 15-20.
- Kohler, J., F. Caravaca, L. Carrasco, and A. Roldan (2007) Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Appl. Soil Ecol. 35: 480-487. https://doi.org/10.1016/j.apsoil.2006.10.006
- Chen, Q., H. Y. Hu, M. Gao, J. Xu, Y. Q. Zhou, and J. G. Sun (2011) Screening and identification of a nitrogen fixing bacteria with 1-aminocyclopropane-1-carboxylate deaminase activity. Plant Nutr. Fert. Sci. 17: 1515-1521.
- Upadhyay, S. K., D. P. Singh, and R. Saikia (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr. Microbiol. 59: 489-496. https://doi.org/10.1007/s00284-009-9464-1
- Upadhyay, S. K. and D. P. Singh (2014) Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biology 17: 288-293.
- Sachdev, D., V. Agarwal, P. Verma, Y. Shouche, P. Dhakephalkar, and B. Chopade (2008) Assessment of microbial biota associated with rhizosphere of wheat (Triticum aestivum) during flowering stage and their plant growth promoting traits. The Internet Journal of Microbiology 7: 10.5580/21a7.
Cited by
- Phytostabilization of salt accumulated soil using plant and biofertilizers: Field application vol.124, 2017, https://doi.org/10.1016/j.ibiod.2017.05.001
- Biodegradation of toxic organic compounds using a newly isolated Bacillus sp. CYR2 vol.22, pp.3, 2017, https://doi.org/10.1007/s12257-017-0117-0
- Effect of plant growth promoting bacteria on early growth of wheat cultivars vol.62, pp.3, 2019, https://doi.org/10.3839/jabc.2019.033