DOI QR코드

DOI QR Code

Antioxidant Effect of the Halophyte Atriplex gmelinii

가는갯능쟁이 (Atriplex gmelinii)의 항산화 효과

  • Jeong, Huijeong (Ocean Science & Technology School, Korea Maritime & Ocean University) ;
  • Kim, Hojun (Division of Marine Bioscience, Korea Maritime & Ocean University) ;
  • Ju, Eunshin (Division of Marine Bioscience, Korea Maritime & Ocean University) ;
  • Kong, Chang-Suk (Department of Food and Nutrition, College of Medical & Life Sciences, Silla University) ;
  • Seo, Youngwan (Ocean Science & Technology School, Korea Maritime & Ocean University)
  • 정희정 (한국해양대학교 해양과학기술전문대학원) ;
  • 김호준 (한국해양대학교 해양생명과학부) ;
  • 주은신 (한국해양대학교 해양생명과학부) ;
  • 공창숙 (신라대학교 식품영양학과) ;
  • 서영완 (한국해양대학교 해양과학기술전문대학원)
  • Received : 2016.08.29
  • Accepted : 2016.10.24
  • Published : 2016.12.31

Abstract

In the present study, antioxidant activity of crude extract and its solvent-partitioned subfractions (n-hexane, 85% aqueous methanol, n-butanol, and water) obtained from Atriplex gmelinii was investigated using several different antioxidant assays. The tested samples possessed different antioxidant and radical-scavenging activities in different assays. n-butanol fraction showed the most potent radical-scavenging activity on reducing power while 85% aqueous methanol fraction exhibited the highest radical-scavenging activity on DPPH radicals and intracellular reactive oxygen species (ROS). On the otherhand, n-BuOH and 85% aqueous methanol revealed the similar inhibitory effect on peroxynitrite-scavenging and genomic DNA oxidation. These results suggest that the Atriplex gmelinii can be used as the valuable source for developing a natural antioxidant.

Keywords

References

  1. Hernandez, J. A., A. Campillo, A. Jimenez, J. J. Alarcon, and F. Sevilla (1999) Response of antioxidant systems and leaf water relations to NaCl in pea plants. New Phytol. 141: 241-251. https://doi.org/10.1046/j.1469-8137.1999.00341.x
  2. Foyer, C. and G. Noctor (2005) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell. 17: 1866-1875. https://doi.org/10.1105/tpc.105.033589
  3. Ozgur, R., B. Uzilday, A. H. Sekmen, and I. Turkan (2013) Reactive oxygen species regulation and antioxidant defence in halophytes. Funct. Plant Biol. 40: 832-847.
  4. Jithesh, M. N., S. R. Prashanth, K. R. Sivaprakash, and A. K. Parida (2006) Antioxidative response mechanisms in halophytes: their role in stress defence. J. Genet. 85: 237-324. https://doi.org/10.1007/BF02935340
  5. Sharma, S. S. and K. J. Dietz (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci. 14: 43-50.
  6. Yildiztugay, E., A. H. Sekmen, I. Turkan, and M. Kucukoduk (2011) Elucidation of physiological and biochemical mechanisms of an endemic halophyte Centaurea tuzgoluensis under salt stress. Plant Physiol. Biochem. 49: 816-824. https://doi.org/10.1016/j.plaphy.2011.01.021
  7. Gratao, P. L., A. Polle, P. J. Lea, and R. A. Azevedo (2005) Making the life of heavy metalstressed plants a little easier. Funct. Plant Biol. 32: 481-494. https://doi.org/10.1071/FP05016
  8. Moller, I. M., P. E. Jensen, and A. Hansson (2007) Oxidative modifications to cellular components in plants. Annu Rev. Plant Biol. 58: 459-481. https://doi.org/10.1146/annurev.arplant.58.032806.103946
  9. Bae, J.-J., H.-S. Yoon, Y.-S. Choo, and S.-D. Song (2003) The responses of antioxidative enzymes and salt tolerance of Atriplex gmelinii. Korean J. Ecol. 26: 273-280. https://doi.org/10.5141/JEFB.2003.26.5.273
  10. Folin, O. and W. Denis (1912) On phosphotungastic phosphomolybdic compounds as color reagents. J. Biol. Chem. 12: 239-249.
  11. Blois, M. S. (1998) Antioxidant determinations by the use of a stable free radical. Nature 26: 1199-1200.
  12. Kooy, N. W., J. A. Royall, H. Ischiropoulos, and J. S. Beckman (1994) Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic. Biol. Med. 16:149-156. https://doi.org/10.1016/0891-5849(94)90138-4
  13. Hansen, M. B., S. E. Nielsen, and K. Berg (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Meth. 119: 203-210. https://doi.org/10.1016/0022-1759(89)90397-9
  14. Okimoto, Y., A. Watanabe, E. Niki, T. Yamashita, and N. Noguchi (2000) A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett. 474: 137-140. https://doi.org/10.1016/S0014-5793(00)01587-8
  15. Milne, L., P. Nicotera, S. Orrenius, and M. Burkitt (1993) Effects of glutathione and chelating agents on copper-mediated DNA oxidation: Pro-oxidant and antioxidant properties of glutathione. Arch. Biochem. Biophys. 304: 102-109. https://doi.org/10.1006/abbi.1993.1327
  16. Oyaizu, M. (1986) Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  17. Hong, J.-H., J.-L. Jeon, J.-H. Lee, and I.-S. Lee (2007) Antioxidant properties of Artemisia princeps Pamp. J. Korean Soc. Food Sci. Nutr. 36: 657-662. https://doi.org/10.3746/jkfn.2007.36.6.657
  18. Kim, Y. J., J.-A Jeong, S.-H. Kwon, and C. H. Lee (2008) Comparison of biological activities of extracts from different parts and solvent fractions in Cornus kousa Buerg. Korean J. Plant Res. 21: 28-35.
  19. Lee, M. A, H. J. Choi, J. S. Kang, Y. W. Choi, and W. H. Joo (2008) Antioxidant activities of the solvent extracts from Tetragonia tetragonioides. J. Life Sci. 18: 220-227. https://doi.org/10.5352/JLS.2008.18.2.220
  20. Choi, S. J., E. Cho, E. Cho, Y. Jeong, C. S. Ku, B. Ha, and H. J. Chae (2011) Screening of functional materials from solvent fractions of apple flower leaf extract. KSBB Journal 26: 165-171. https://doi.org/10.7841/ksbbj.2011.26.2.165
  21. Jeon, S.-M., J.-Y. Lee, H.-W. Kim, Y.-M. Lee, H.-H. Jang, K.-A Hwang, H.-R. Kim, and D.-S. Park (2012) Antioxidant activity of extracts and fractions from Aster scaber, J. Korean Soc. Food Sci. Nutr. 41: 1197-1204. https://doi.org/10.3746/jkfn.2012.41.9.1197
  22. Gulcin, I., V. Mshvildadze, A. Gepdiremen, and R. Elias (2004) Antioxidant activity of saponins isolated from ivy: ${\alpha}$-hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside-F. Planta Med. 70: 561-563. https://doi.org/10.1055/s-2004-827158
  23. Zhu, Y. Z., S. H. Huang, B. K. H. Tan, J. Sun, M. Whiteman, and Y.-C. Zhu (2004) Antioxidants in Chinese herbal medicines: a biochemical perspective. Nat. Prod. Rep. 21: 478-489. https://doi.org/10.1039/b304821g
  24. Xi, M., C. Hai, H. Tang, M. Chen, K. Fang, and X. Liang (2008) Antioxidant and antiglycation properties of total saponins extracted from traditional Chinese medicine used to treat diabetes mellitus. Phytother. Res. 22: 228-237. https://doi.org/10.1002/ptr.2297
  25. Brewer, M. S. (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 10: 221-247. https://doi.org/10.1111/j.1541-4337.2011.00156.x
  26. Oroian, M. and Escriche, I. (2015) Antioxidants: Characterization, natural sources, extraction and analysis. Food Res. Int. 74: 10-36. https://doi.org/10.1016/j.foodres.2015.04.018

Cited by

  1. Inhibits Adipogenesis via AMPK/MAPK Pathway in 3T3-L1 Adipocytes vol.2018, pp.1741-4288, 2018, https://doi.org/10.1155/2018/8572571
  2. 가는갯능쟁이(Atriplex gmelinii) 추출물과 용매분획물의 MMP-2와 MMP-9 활성 저해효과 vol.41, pp.2, 2016, https://doi.org/10.4217/opr.2019.41.2.079