DOI QR코드

DOI QR Code

전기자동차용 히트펌프의 열 부하 조건에 따른 캐빈온도 특성

Characteristic of Cabin Temperature According to Thermal Load Condition of Heat Pump for Electric Vehicle

  • Park, Ji Soo (Dept. of Mechanical Engineering, Chungnam Nat'l Univ.) ;
  • Han, Jae Young (Dept. of Mechanical Engineering, Chungnam Nat'l Univ.) ;
  • Kim, Sung-Soo (Dept. of Mechatronics Engineering, Chungnam Nat'l Univ.) ;
  • Yu, Sang Seok (Dept. of Mechanical Engineering, Chungnam Nat'l Univ.)
  • 투고 : 2015.08.17
  • 심사 : 2015.12.06
  • 발행 : 2016.02.01

초록

내연기관 자동차와 달리 전기자동차는 배터리 폐열이 부족하여 실내 난방을 위해 추가적으로 PTC 히터를 사용하고 있지만 전력소모가 큰 단점이 있다. 최근 이러한 단점을 보완할 수 있는 히트펌프 적용에 관한 연구가 활발히 진행되고 있다. 본 연구에서는 히트펌프의 운전특성 해석을 위해 MATLAB/SIMULINK$^{(R)}$환경에서 R134a 히트펌프 모델과 캐빈 모델을 개발하였다. 모델은 여름과 겨울에서 히트펌프의 작동 특성에 따른 실내 온도변화를 나타낼 수 있으며, 모델 검증은 구성품 수준에서 응축기와 증발기의 용량 비교를 수행하였다. 또한 동일한 냉방조건에서 캐빈온도 변화 비교를 통해 캐빈 모델을 검증하였다. 해석 결과 전동압축기 소비전력은 모든 외기온도 조건에서 PTC 히터 보다 낮은 것으로 나타났다. 또한 영하조건에서 히트펌프의 난방용량이 부족한 현상에 대해 폐열회수를 적용하여 효율적인 난방 작동을 할 수 있는 조건을 분석하였다.

The Positive Temperature Coefficient (PTC) is used for cabin air heating of a battery electric vehicle, which is different from conventional vehicles. Since the PTC heater consumes a large quantity of power in a parasitic manner, many valuable studies have been reported in the field of alternative heat pumps. In this study, a model for an R134a heat pump taking into account the thermal environment of the cabin was developed for a MATLAB/SIMULINK(R) platform. Component and cabin models are validated with reference values. Results show that the heat pump is more competitive for parasitic power consumption over all ambient temperature conditions. Additionally, the method of waste heat recovery to overcome disadvantages when temperatures are below zero is applied to efficiently operate the heat pump.

키워드

참고문헌

  1. Park, C.H., Jee, Y.J. and Lee, D.W., 2011, "Development Trends of Heat-pump System for Electric Driven Vehicles," Auto Journal, Vol. 33, No. 12, pp. 29-35.
  2. Qi, Z., 2014, "Advances on Air Conditioning and Heat Pump System in Electric Vehicles - A Review," Renewable and Sustainable Energy Reviews, Vol. 38, pp. 754-764. https://doi.org/10.1016/j.rser.2014.07.038
  3. Lee, D.Y., Cho, C.W., Won, J.P., Park, Y.C. and Lee, M,Y., 2013, "Performance Characteristics of Mobile Heat Pump for A Large Passenger Electric Vehicle," Applied Thermal Engineering, Vol. 50, pp. 660-669. https://doi.org/10.1016/j.applthermaleng.2012.07.001
  4. Lee, D.W., Oh, D.H. and Jee Y.J., 2014, "Investigation of R134a Heat Pump System for Zero Emission Vehicle," KSAE Conference, pp. 595-600.
  5. Lustbader, J.A., 2012, "Light Vehicle HVAC Model Development and Validation," NREL FY 2012 Annual Progress Report, pp. 254-260.
  6. Lee, J.K., Lee, D.H. and Won, J.P., 2007, "A Study on Electrically Controlled R-134a Heat Pump System for a Fuel Cell Electric Vehicle (FCEV)," KSAE, Vol. 15, No. 3, pp. 124-132.
  7. Woo, H.S., Ahn, J.H., Oh, M.S.,Kang, H. and Kim, Y.C., 2013, "Study on the Heating Performance Characteristics of a Heat Pump System Utilizing Air and Waste Heat Source for Electric Vehicles," KJACR, Vol. 25, No. 4, pp. 180-186.
  8. Borgnakke, C. and Sonntag, R.E., 2011, "Fundamentals of thermodynamics", WILEY
  9. Incropera, F.P., Dewitt, D.P., Bergman, T.L. and Lavine, A.S., 2008, "Fundamentals of heat and mass transfer", WILEY