• Title/Summary/Keyword: Outdoor Heat Exchanger

Search Result 72, Processing Time 0.022 seconds

Numerical Analysis on the Performance of a Outdoor Air Cooled Heat exchanger for Cooling Tower (외기이용 하이브리드 냉각탑 성능해석)

  • Kim, Sung-Il;Lee, Wook-Hyun;Lee, Kye-Jung;Chun, Won-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2322-2327
    • /
    • 2008
  • This paper is to provide analysis model that can be used to investigate the improvement in energy efficiency for cooling tower by using fresh air. Numerical analysis of Air-cooled heat exchanger for single-phase flow with variations of outdoor air temperature has been performed. A complete set of correlations of the heat transfer in both refrigerant and air sides was employed for predicting the heat transfer rate. The numerical results derived from the correlations were verified with experimental results. The energy consumption for a hybrid cooling tower has been compared for variation of a outdoor air temperature. The results showed that the hybrid cooling tower in low outdoor temperature offers a significant improvement in energy efficiency. The thermal analysis aids significantly in the solution of the design problem of hybrid cooling tower.

  • PDF

A Cost Analysis of the Heat Recovery Ventilator under Various Condition (열회수형 환기장치의 운전조건에 따른 경제성 평가에 관한 연구)

  • Kang, Tae-Wook;Koh, Jae-Yoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Changes in building construction methods and repairing of older buildings have reduced infiltration rate. Synthetic materials, release airborne particles and uneven healthy odor are increased. For preventing pollutants introduce fresh outdoor air into the building, simply letting fresh outdoor air into building, however, Is not a cost-effective way to ventilation. When additional ventilation is added to an existing HVAC system, the heating and cooling equipment, often cannot handle the increased load. A HRV provides a way to minimize in energy costs while introducing fresh air to a building. In this study, the economical research of HRV, made of three types of materials, are conducted. Heat recovering characteristics are studied at seasonal outdoor air conditions based on the outdoor air property condition at, Seoul in 2002. As a results, the average sensible effectiveness is 0.75 in the sensible heat exchanger and average total effectiveness is 0.65 in the total heat exchanger. The pay back period of the sensible heat exchangers are $3.2{\sim}3.5$ year and it of total heat exchanger is 2.2 years.

A Study on the Performance of Paper Heat Exchanger for Exhaust Heat Recovery (배기열 회수용 종이 열교환기의 성능에 관한 연구)

  • Yoo, Seong-Yeon;Chung, Min-Ho;Choi, Jae-Ho;Kwon, Hwa-Kil;Lee, Chun-Woo;Lee, Ki-Seong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.245-250
    • /
    • 2003
  • In order to control indoor air quality and save energy, it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery. The purpose of this research is to find the performance of paper heat exchanger for exhaust heat recovery, which exchanges latent heat as well as sensible heat. Experimental apparatus comprises heat exchanger model, constant temperature and humidity chamber, fan and measurement systems for temperature, pressure and flow rate. Thermal performance and pressure loss of the paper heat exchanger are measured and compared at various air velocities and outdoor conditions. Experimental results show that paper heat exchanger can recover $50{\sim}70%$ of the enthalpy difference between supply and exhaust air.

  • PDF

An Experimental Study on the Performance of Outdoor Heat Exchanger for Heat Pump Using $CO_{2}$ ($CO_{2}$이용 열펌프의 실외열교환기 성능에 관한 실험적 연구)

  • Chang Young Soo;Lee Min Kyu;Ahn Young San;Kim Young Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.101-109
    • /
    • 2005
  • The purpose of this study is to investigate the performance of outdoor heat exchanger for heat pump using carbon dioxide. Two types of fin and tube heat exchangers (2 rows for type A and 3 rows for B) are tested. Both heat exchangers have counter-cross flow and 1-circuit arrangement. Test results such as heat transfer rate, pressure drop characteristics and temperature distribution in the heat exchanger are shown with respect to mass flow rate of refrigerant and frontal air velocity For cooling mode, the minimum temperature difference between air and refrigerant of type B is smaller than that of type A by $1^{circ}C$, but the pressure loss of air side is much higher for type B by $29\%$. It is found that a large temperature gradient of carbon dioxide during gas cooling Process Promotes thermal conduction through tube wall and fins which results in degradation of heat transfer performance. For heating mode operation, type B heat exchanger shows higher heat transfer performance compared to type A. However, because pressure loss of refrigerant side of type B is much greater than that of type A, the refrigerant outlet pressure of type B becomes lower than that of type A.

Air-side Heat Transfer and Pressure Drop of a Fin-and-Tube Heat Exchanger Under Low Temperature Condition (저온 조건에서 핀-관 열교환기의 공기측 열전달 및 압력손실)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.15-20
    • /
    • 2017
  • Currently, residential air conditioners operate as a heat pump during winter. In this case, the outdoor heat exchanger acts as an evaporator obtaining heat from cold air. On the other hand, it acts as a condenser during summer transferring heat to hot air. The outdoor temperature changes significantly from high to low. Generally, the air-side j and f factors are obtained at a standard outdoor temperature. Therefore, the applicability of the j and f factors under different outdoor conditions needs to be checked. In this study, tests were conducted for a two-row louver finned heat exchanger changing the outdoor temperature to subzero. The effects of the tube-side brine flow rate were also checked. The results showed that air-side j and f factors were essentially constant and independent of the outdoor temperature, suggesting that an extension of j and f factors obtained under standard conditions to a low outdoor temperature is acceptable. All j and f factors agreed within 9% and 3%, respectively. Tests were also conducted by changing the coolant flow rate. Both the j and f factors did not change according to the flow rate, suggesting that the tube-side heat transfer correlation is acceptable.

A Study on the Performance Characteristics of Fin-type Heat Exchanger for the Automobile Air-Conditioners (자동차 공조용 핀형 열교환기의 성능특성에 관한 연구)

  • 홍경한;전상신;이승재;박찬수;권일욱;김재열;김병철;하옥남
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.100-105
    • /
    • 2004
  • Fin-tube type(Fin-type) heat exchanger has been tested in order to replace the heat exchanger of parallel flow type(P.F -type) which is now widly used in automobile air conditioning system The following conclusions are drawn by the comparison of the characteristics of the heat exchangers. Evaporator and condenser capacities and COP(Coefficience of performance) were varied as with the compressor speed, outdoor air temperature and air flow rate changed, which much influenced on the characteristics of the air conditioning system Evaporator and condenser capacities were increased with increasing compressor speed and outdoor air temperature. Evaporator and condenser pressures of Fin-type were decreased by 7% and 5% respectively compared with those of P.F-type. The COP of Fin-type was decreased with increasing outdoor air temperature and compressor speed. The COP of P.F-type was decreased by 14% compared with that of Fin-type.

An Experimental Study on the Operating Performance of an Air Shift type Heat Pump with Heat Exchanger (전열교환기가 설치된 기류전환형 히트펌프의 동계운전성능에 관한 실험적 연구)

  • Jang, Young-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.567-572
    • /
    • 2010
  • Air shift type heat pump is combined heat recovery ventilator and refrigerator, and it is installed an air shifter changing air flow. And so it is an perfect AHU(Air Handling Unit) capable to cooling, heating, ventilation and heat recovery. Therefore, an experimental study has been carried out to investigate the operating performance in winter for this system. An experimental data are room temperature, inlet/outlet temperature of condenser, evaporator and heat exchanger. They have been measured as the variation of outdoor temperature. The results, in case of rising above freezing, the air shift type heat pump system is operated normally, and the heating COP is 3.0~4.2 by varying outdoor temperature from $-3^{\circ}C$ to $15^{\circ}C$.

Thermal Performance of an Enthalpy Exchanger Made of Paper at Different Outdoor Temperatures and Humidities (외기 온·습도 변화에 따른 종이재질 전열교환 엘리먼트 성능에 관한 연구)

  • Kim, Nae-Hyun;Lee, Eul-Jong;Song, Kil-Sup;Oh, Wang-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.697-702
    • /
    • 2010
  • An enthalpy exchanger in which heat and moisture transfer occur between the indoor and outdoor air operates at various outdoor conditions. In this study, the effect of the outdoor-air temperature and humidity on the performance of an enthalpy exchanger was experimentally investigated. An apparatus was specially-made to accurately measure the incoming and outgoing dry- and wet-bulb air temperatures as well as the flow rates. Tests were conducted in constant-temperature and constant-humidity chambers at different outdoor temperatures and humidities. It is shown that the effectiveness of latent-heat exchange increases as the relative humidity increases; further, this effect exhibited minimal dependence on the absolute humidity. However, the effectiveness of sensible-heat exchange is independent of both temperature and humidity

The Study on EnergyPlus Simulation Application Feasibility for Exit Air Temperature Prediction through Horizontal Geothermal Heat Exchanger (수평형 지중 열교환기의 출구온도 예측을 위한 EnergyPlus 적용 타당성에 관한 연구)

  • Hwang, Yongho;Cho, Sungwoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.4
    • /
    • pp.131-136
    • /
    • 2016
  • Horizontal geothermal heat exchanger is affected by various factors such as pipe length, soil temperature, and outdoor environment. Simulation program is convenient for responding to various factors. The objective of this study was to determine the feasibility of using EnergyPlus to predict exit air temperature through horizontal geothermal heat exchanger in domestic. The correlation coefficient between EnergyPlus results and experimental results was 0.825. The correlation coefficient between EnergyPlus results and mathematical results was 0.722, indicating "The two values can based on Lousi on values can be Our results indicate that it is possible to use EnergyPlus to predict exit air temperature through horizontal geothermal heat exchanger.

An Evaluation on Energy Recovery Performance of the Ventilation System in Multi-Residential Building by Field Measurement (실험을 통한 공동주택 환기시스템의 실제 운전 시 전열교환성능 검토)

  • Choi, Younhee;Song, Doosam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.2
    • /
    • pp.68-73
    • /
    • 2017
  • Recently, energy recovery ventilators (ERVs) have been installed for energy saving in many multi-residential buildings in Korea. The performance of the heat exchanger of an ERV is analyzed in this study under specific indoor and outdoor conditions in a test-cell measurement. However, the performance of the heat exchanger varies according to the indoor and outdoor condition. In this study, the performance of energy recovery of the ventilation system was therefore analyzed in actual weather conditions using field measurement. Experiments were conducted under winter conditions in a multi-residential building for 20 days. Based on the measurement results, the characteristics of sensible heat and latent heat exchange rates were analyzed.