DOI QR코드

DOI QR Code

Numerical Study on Fluid Flow Characteristics in Taylor Reactor using Computational Fluid Dynamics

CFD를 이용한 테일러 반응기의 유동 특성에 관한 수치적 연구

  • Lee, Seung-Ho (Dept. of Chemical and Biomolecular Engineering, Yonsei Univ.) ;
  • Shim, Kyu Hwan (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Jeon, Dong Hyup (Dept. of Mechanical System Engineering, Dongguk Univ.)
  • 이승호 (연세대학교 화공생명공학과) ;
  • 심규환 (서울대학교 기계항공공학부) ;
  • 전동협 (동국대학교 기계부품시스템공학과)
  • Received : 2015.06.01
  • Accepted : 2015.11.17
  • Published : 2016.01.01

Abstract

This study investigated the variations of Taylor flow and particle residence time in a Taylor reactor according to the changes of angular velocity and inlet velocity using computational fluid dynamics technique. The results showed that the fluid in a reactor became unstable with an increase of angular velocity. The flow moved to the regions of CCF, TVF, WVF and MWVF resulting in an increase of Reynolds number. Accordingly, the flow characteristics were different for each regions. We confirmed that the inlet velocity influences the Taylor flow. The particle residence time and standard deviation increased with an increase of angular velocity and a decrease of inlet velocity.

본 연구는 테일러 반응기내 각속도와 유입속도 변화에 따른 테일러 유동의 변화와 입자의 체류시간 변화를 전산수치해석 기법을 이용하여 알아보았다. 반응기내 유동은 각속도가 증가함에 따라 점점 불안정해지는 경향을 보였다. 유동은 레이놀즈 수의 증가에 따라 CCF, TVF, WVF, MWVF 영역으로 이동하게 되고 각 영역에서 상이한 유동특성을 보였다. 유입속도의 변화가 테일러 유동에 영향을 주는 것을 확인하였다. 각속도가 빠를수록, 그리고 유입속도가 느릴수록 입자의 체류시간과 표준편차는 증가하였다.

Keywords

References

  1. Taylor, G. I., 1923, "Stability of a Viscous Liquid Contained Between Two Rotating Cylinders," Phil. Trans. R. Soc. Lond. A, Vol. 223, No. 605-615, pp. 289-343. https://doi.org/10.1098/rsta.1923.0008
  2. Seun, L., 2012, "Study on Polymorphism of Sulfamerazine induced by Flow Pattern of Taylor Vortex," M.A. Thesis, University of Kyunghee, Seoul.
  3. Donnelly, R. J., 1991, "Taylor-Couette Flow: The Early Days," Phys. Today, Vol. 44, No. 11, pp. 32-39. https://doi.org/10.1063/1.881296
  4. Chandrasekhar, S., 1962, "The Stability of Spiral Flow Between Rotating Cylinders," Proc. R. Soc. Lond. A, Vol. 265, No. 1321, 188-197. https://doi.org/10.1098/rspa.1962.0003
  5. Wereley, S. T. and Lueptow, R. M., 1998, "Spatio-temporal Character of Non-wavy and Wavy Taylor-couette Flow," J. Fluid Mech., Vol. 364, pp. 59-80. https://doi.org/10.1017/S0022112098008969
  6. Nemri, M., Climent, E., Charton, S., Lanoe, J. Y. and Ode, D., 2013, "Experimental and Numerical Investigation on Mixing and Axial Dispersion in Taylor-Couette Flow Patterns," Chem. Eng. Res. Des., Vol. 91, No. 12, pp. 2346-2354. https://doi.org/10.1016/j.cherd.2012.11.010
  7. Marcus, P. S., 1984, "Simulation of Taylor-Couette flow. Part 2. Numerical Results for Wavy-vortex Flow with One Travelling Wave," J. Fluid Mech, Vol. 146, pp. 65-113. https://doi.org/10.1017/S0022112084001774
  8. Coles, D., 1965, "Transition in Circular Couette Flow," J. Fluid Mech, Vol. 21 No. 3, pp. 385-425. https://doi.org/10.1017/S0022112065000241
  9. Dou, H. S., Khoo, B. C. and Yeo, K. S., 2008, "Instability of Taylor-Couette Flow between Concentric Rotating Cylinders," Inter. J. of Thermal Science, Vol. 47, No. 11, pp. 1422-1435. https://doi.org/10.1016/j.ijthermalsci.2007.12.012
  10. Tamhane, T. V., Joshi, J. B. and Patil, R. N., 2014, "Performance of Annular Centrifugal Extractors: CFD Simulation of Flow Pattern, Axial Mixing and Extraction with Chemical Reaction," Chem. Eng. Sci., Vol. 110, pp. 134-143. https://doi.org/10.1016/j.ces.2013.08.016
  11. Kim, J. M., Chang, S. M., Chang, J. H. and Kim, W. S., 2011, "Agglomeration of Nickel/Cobalt/Manganese Hydroxide Crystals in Couette-Taylor Crystallizer," Colloids Surf. A, Vol. 384, pp. 31-39. https://doi.org/10.1016/j.colsurfa.2011.03.016
  12. Choi, M. S., Kim, H. S., Kim, J. S., Park, S. J., Lee, Y. M. and Jin, B. S., 2014, "Synthesis and Electrochemical Performance of High-capacity 0.34Li2MnO3.0.66LiMn0.63Ni0.24Co0.13O2 Cathode Materials using a Couette-Taylor Reactor," Mater. Res. Bulletin, Vol. 58, pp. 223-228. https://doi.org/10.1016/j.materresbull.2014.05.005
  13. Aljishi, M. F., Ruo, A. C., Park, J. H., Nasser, B., Kim, W. S. and Joo, Y. L., 2013, "Effect of Flow Structure at the Onset of Instability on Barium Sulfate Precipitation in Taylor-Couette crystallizers," J. Crystal Growth, Vol. 373, pp. 20-31. https://doi.org/10.1016/j.jcrysgro.2012.11.048
  14. Ahmad, A. L., Kusumastuti, A., Shah Buddin, M. M. H., Derek, C. J. C. and Ooi, B. S., 2014, "Emulsion Liquid Membrane based on a New Flow Pattern in a Counter Rotating Taylor-Couette Column for Cadmium Extraction," Sep. Purif. Technol., Vol. 127, 46-52. https://doi.org/10.1016/j.seppur.2014.02.029
  15. Lee, S. Y., Lee, C. H. and Kim, W. S., 2013, "Taylor Vortex Effect on Flocculation of Hairy Crystals of Calcium Lactate in Anti-solvent Crystallization," J. Crystal Growth, Vol. 373, 32-37. https://doi.org/10.1016/j.jcrysgro.2012.10.012
  16. Masuda, H., Horie, T., Hubacz, R. and Ohmura, N., 2013, "Process Intensification of Continuous Starch Hydrolysis with a Couette-Taylor Flow Reactor," Chem. Eng. Res. Des., Vol. 91, pp. 2259-2264. https://doi.org/10.1016/j.cherd.2013.08.026
  17. Qiao, J., Lew, C. M. J., Karthikeyan, A. and Wang, C. H., 2014, "Production of PEX Protein from QM7 Cells Cultured in Polymer Scaffolds in a Taylor-Couette Bioreactor," Biochem. Eng. J., Vol. 88, pp. 179-187. https://doi.org/10.1016/j.bej.2014.04.012
  18. Paule, A., Lauga, Ten-Hage, B., L., Morchain, J., Duran, R., Paul, E. and Rols, J. L., 2011, "A Photosynthetic Rotating Annular Bioreactor (Taylor- Couette Type Flow) for Phototrophic Biofilm Cultures," Water Res., Vol. 45, pp. 6107-6118. https://doi.org/10.1016/j.watres.2011.09.007
  19. Lee, H. K., Lee, S. G. and Jeon, D. H., 2015, "Numerical Studies of Flow Characteristics and Particle Residence Time in a Taylor Reactor," Appl. Chem. Eng., Vol. 26, pp. 67-73. https://doi.org/10.14478/ace.2014.1117
  20. Wardle, K. and Lee, T., 2013, "Finite Element Lattice Boltzmann Simulations of Free Surface Flow in a Concentric Cylinder," Comput. Math. Appl., Vol. 65, pp. 230-238. https://doi.org/10.1016/j.camwa.2011.09.020