DOI QR코드

DOI QR Code

자동조종장치 동역학을 고려한 궤환 형태의 BTT 미사일용 최적 종말 유도 법칙

A Feedback-Form of Terminal-Phase Optimal Guidance Law for BTT Missiles Considering Autopilot Dynamics

  • Yoo, Seong-Jae (ASRI/Dept. of Electrical and Computer Engineering, Seoul National University) ;
  • Hong, Jin-Woo (Samsung Electronics Co., Ltd.) ;
  • Ha, In-Joong (ASRI/Dept. of Electrical and Computer Engineering, Seoul National University)
  • 투고 : 2015.10.14
  • 심사 : 2016.02.20
  • 발행 : 2016.03.01

초록

BTT 미사일은 STT 미사일과 달리 피치와 롤 채널이 동역학적으로 결합되어 있기 때문에 유도 법칙 개발 시 3차원 추적 기하학을 고려하여야 한다. 기존 연구결과들과는 달리 본 논문에서는 3차원 추적 기하학뿐만 아니라 자동조종장치의 피치와 롤 채널 동역학을 모두 고려한 BTT 미사일의 최적 종말 유도 법칙을 제안한다. 그 결과, 제안하는 유도 법칙은 상대적으로 느린 자동조종장치 동역학에서도 시간 지연 효과로 인한 성능 하락 없이 작은 요격 오차의 높은 요격 성능을 보장한다. 또한, 제안하는 최적 유도 법칙은 잔여 비행시간의 함수를 계수로 하는 궤환 형태로 구해진다. 끝으로 다양한 요격 상황에서의 모의실험을 통해 그 성능을 입증한다.

In contrast with STT missiles, the guidance law design for BTT missiles should be based on 3-dimensional pursuit kinematics, since the pitch and roll channels of BTT missiles are coupled dynamically. More generally than the prior works, the dynamics of pitch and roll channels, as well as 3-dimensional pursuit kinematics are considered in the design of our terminal-phase optimal guidance law for BTT missiles proposed in this paper. Thereby, the proposed optimal guidance law guarantees high capturability with small miss distance without significant performance degradation due to time-lag effect even in case of relatively slow autopilot dynamics. Moreover, the resulting optimal guidance law is expressed explicitly in feedback-form with the coefficients given as the functions of time-to-go. The effectiveness and practicality of our work is demonstrated through various simulation results.

키워드

참고문헌

  1. Arrow, A., "Status and Concerns for Bank-to-Turn Control of Tactical Missiles", Journal of Guidance, Control, and Dynamics, Vol. 8, No. 2, 1985, pp. 267-274. https://doi.org/10.2514/3.19970
  2. Alder, F. P., "Missile guidance by three-dimensional proportional navigation", Journal of Applied Physics, Vol. 27, No. 3, 1956, pp. 500-507. https://doi.org/10.1063/1.1722411
  3. Zarchan, P., Tactical and strategic missile guidance, Vol. 124, Progress in Astronautics and Aeronautics, AIAA, Washington, D.C., 1997, pp. 135-154.
  4. Chen, R. H., Speyer, J. L., and Lianos, D., "Optimal Intercept Missile Guidance Strategies with Autopilot Lag", Journal of Guidance, Control, and Dynamics, Vol. 33, No. 4, 2010, pp. 1264-1272. https://doi.org/10.2514/1.44618
  5. Hexner, G., and Pila, A. W., "Practical Stochastic Optimal Guidance Law for Bounded Acceleration Missiles", Journal of Guidance, Control, and Dynamics, Vol. 34, No. 2, 2011, pp. 437-445. https://doi.org/10.2514/1.51543
  6. Shima, T., Idan, M., and Golan, O. M., "Sliding-Mode Control for Integrated Missile Autopilot Guidance", Journal of Guidance, Control, and Dynamics, Vol. 29, No. 2, 2006, pp. 250-260. https://doi.org/10.2514/1.14951
  7. Park, B. G., Kim, T. H., Kim, Y. H., and Kwon, H. H., "Composite Guidance Law for Impact Angle Control Against Moving Targets Under Physical Constraints", J. of The Korean Society for Aeronautical and Space Science, Vol. 43, No. 6, 2015, pp. 497-506. https://doi.org/10.5139/JKSAS.2015.43.6.497
  8. Cho, D. S., Kim, H. J., Tahk, M. J., "Nonsingular Sliding Mode Guidance for Impact Time Control", Journal of Guidance, Control, and Dynamics, 2015, pp. 1-8.
  9. Aggarwal, R. K. and Moore, C. R., "Terminal Guidance Algorithm for Ramjet- Powered Missiles", Journal of Guidance, Control, and Dynamics, Vol. 21, No. 6, 1998, pp. 862-866. https://doi.org/10.2514/2.4349
  10. Song, S. H. and Ha, I. J., "A Lyapunov-Like Approach to Performance Analysis of 3-Dimensional Pure PNG Laws", IEEE Trans. on Aerospace and Electronic Systems, Vol. 30, No. 1, 1994, pp. 238-248. https://doi.org/10.1109/7.250424
  11. Yeom, J. H., Song, S. H., Hong, J. W., and Ha, I. J., "Singular Perturbation-Like Approach to Compensation of Actuator Dynamics Effect in Missile Control", IEEE Trans. on Aerospace and Electronic Systems, Vol. 50, No. 4, 2014, pp. 2417-2439. https://doi.org/10.1109/TAES.2014.120332
  12. Lewis, F. L. and Syrmos, V. L., Optimal Control 2nd Ed., John Wiley & Son, INC., 1995, pp. 282-283.
  13. http://nsl.snu.ac.kr/ksas/og.pdf, accessed Dec. 2015.
  14. Lee, J. G., Han, H. S., and Kim, Y. J., "Guidance Performance Analysis of Bank-To-Turn(BTT) Missiles", Proceedings of the 1999 IEEE International Conference on Control Applications, Hawaii, USA, 1999, pp. 991-996.
  15. Williams, D. E., Friedland, B., and Madiwale, A. N., "Modern Control Theory for Design of Autopilots for Bank-to-Turn Missiles", Journal of Guidance, Control, and Dynamics, Vol. 10, No. 4, 1987, pp. 378-386. https://doi.org/10.2514/3.20228
  16. Ralston, A. and Wilf, H. S., Mathematical Method for Digital Computers, Vol. 2, John Wiley & Son, INC., 1967, pp. 266-269.