DOI QR코드

DOI QR Code

Effect of Blood Contamination on the Push-Out Bond Strength and Surface Morphology of Tricalcium Silicate Materials

혈액오염이 Tricalcium Silicate 재료의 압출강도와 표면형태에 미치는 영향

  • Park, Misun (Department of Pediatric Dentistry, College of Dentistry, Chonnam National University) ;
  • Kim, Jaehwan (Department of Pediatric Dentistry, College of Dentistry, Chonnam National University) ;
  • Choi, Namki (Department of Pediatric Dentistry, College of Dentistry, Chonnam National University) ;
  • Kim, Seonmi (Department of Pediatric Dentistry, College of Dentistry, Chonnam National University)
  • 박미선 (전남대학교 치의학전문대학원 소아치과학교실) ;
  • 김재환 (전남대학교 치의학전문대학원 소아치과학교실) ;
  • 최남기 (전남대학교 치의학전문대학원 소아치과학교실) ;
  • 김선미 (전남대학교 치의학전문대학원 소아치과학교실)
  • Received : 2015.08.12
  • Accepted : 2015.10.16
  • Published : 2016.02.29

Abstract

The aim of this study was to evaluate the effect of blood contamination on the push-out bond strength and surface morphology of tricalcium silicate materials; Biodentine$^{(R)}$, Theracal$^{(R)}$ and mineral trioxide aggregate. The standardized lumens of root slices prepared from extracted single-root human teeth were filled with Biodentine$^{(R)}$, Theracal$^{(R)}$ and mineral trioxide aggregate by manufacturer's instruction. The specimens were randomly divided into 2 groups (n = 20) for each material and then incubated for 4 days at $37^{\circ}C$; control group (phosphate buffered saline solution) and experimental group (fetal bovine serum). The push-out bond strengths were then measured by a universal testing machine and the surface morphology of each experimental group was analyzed by scanning electron microscope. Biodentine$^{(R)}$ and Theracal$^{(R)}$ showed higher push-out bond strength compared with mineral trioxide aggregate after exposure to fetal bovine serum. A substantial change in the surface morphology of each material was observed after exposure to fetal bovine serum. In conclusion, the push-out bond strengths of Biodentine$^{(R)}$ and Theracal$^{(R)}$ were higher than mineral trioxide aggregate when exposed to blood contamination. Therefore, it is supposed that the use of Biodentine$^{(R)}$ and Theracal$^{(R)}$ is appropriate in the presence of blood.

이 연구의 목적은 혈액오염 시 Biodentine$^{(R)}$, Theracal$^{(R)}$, mineral trioxide aggregate(MTA)의 압출강도를 측정하고 표면형태를 관찰하는 것이었다. Biodentine$^{(R)}$, Theracal$^{(R)}$, MTA 각각의 재료를 2개의 그룹으로 나누었다. 대조군은 phosphate buffered saline 용액 조건에서, 실험군은 fetal bovine serum 조건에서 4일간 $37^{\circ}C$에서 보관하였다. 이후 압출강도를 측정하고 주사전자현미경을 이용하여 표면형태를 분석하였다. Biodentine$^{(R)}$과 Theracal$^{(R)}$은 모든 조건에서 MTA보다 유의하게 더 높은 압출강도를 보였고 혈액오염 시 모든 재료의 압출강도는 유의하게 감소하였다. 표면형태 관찰결과 혈액오염 후 모든 재료의 표면형태가 변화하였다. 혈액오염 조건에서 Biodentine$^{(R)}$과 Theracal$^{(R)}$은 MTA와 비교하여 더 높은 압출강도를 보였으므로 혈액오염 조건에 사용하기에 더 적절할 수 있다.

Keywords

References

  1. Lee SJ, Monsef M, Torabinejad M : Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod, 19:541-544, 1993. https://doi.org/10.1016/S0099-2399(06)81282-3
  2. Camilleri J : Hydration mechanisms of mineral trioxide aggregate. Int Endod J, 40:462-470, 2007. https://doi.org/10.1111/j.1365-2591.2007.01248.x
  3. Torabinejad M, Parirokh M : Mineral trioxide aggregate : a comprehensive literature review - part II : leakage and biocompatibility investigations. J Endod, 36:190-202, 2010. https://doi.org/10.1016/j.joen.2009.09.010
  4. Parirokh M, Torabinejad M : Mineral trioxide aggregate : a comprehensive literature review - part I : chemical, physical, and antibacterial properties. J Endod, 36:16-27, 2010. https://doi.org/10.1016/j.joen.2009.09.006
  5. Han L, Okiji T : Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine. Int Endod J, 44:1081-1087, 2011. https://doi.org/10.1111/j.1365-2591.2011.01924.x
  6. Grech L, Mallia B, Camilleri J : Investigation of the physical properties of tricalcium silicate cementbased root-end filling materials. Dent Mater, 29:20-28, 2013.
  7. Zhou HM, Shen Y, Wang ZJ, et al. : In vitro cytotoxicity evaluation of a novel root repair material. J Endod, 39:478-483, 2013. https://doi.org/10.1016/j.joen.2012.11.026
  8. Laurent P, Camps J, About I, et al. : Induction of specific cell responses to a Ca3-SiO5-based posterior restorative material. Dent Mater, 24:1486-1494, 2008. https://doi.org/10.1016/j.dental.2008.02.020
  9. Vivan RR, Zapata RO, Gomes DM, et al. : Evaluation of the physical and chemical properties of two commercial and three experimental root-end filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 110:250-256, 2010. https://doi.org/10.1016/j.tripleo.2010.04.021
  10. Gartner AH, Dorn SO : Advances in endodontic surgery. Dent Clin North Am, 36:357-378, 1992.
  11. Saghiri MA, Lotfi M, Ranjkesh B et al. : Effect of pH on Sealing Ability of White Mineral Trioxide Aggregate as a Root-end Filling Material. J Endod, 34:1226-1229, 2008. https://doi.org/10.1016/j.joen.2008.07.017
  12. Formosa LM, Mallia B, Camilleri J : Push-out bond strength of MTA with antiwashout gel or resins. Int Endod J, 47:454-462, 2014. https://doi.org/10.1111/iej.12169
  13. Torabinejad M, Higa RK, McKendry DJ, Pitt Ford TR : Dye leakage of four root end filling materials : effects of blood contamination. J Endod, 20:159-163, 1994. https://doi.org/10.1016/S0099-2399(06)80326-2
  14. Arens DE, Torabinejad M : Repair of furcal perforations with mineral trioxide aggregate : two case reports. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 82:84-88, 1996. https://doi.org/10.1016/S1079-2104(96)80382-9
  15. Vanderweele RA, Schwartz SA, Beeson TJ : Effect of blood contamination on retention characteristics of MTA when mixed with different liquids. J Endod, 32:421-424, 2006. https://doi.org/10.1016/j.joen.2005.09.007
  16. Nekoofar MH, Stone DF, Dummer PM : The effect of blood contamination on the compressive strength and surface microstructure of mineral trioxide aggregate. Int Endod J, 43:782-791, 2010. https://doi.org/10.1111/j.1365-2591.2010.01745.x
  17. Sarkar NK, Caicedo R, Kawashima I, et al. : Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod, 31:97-100, 2005. https://doi.org/10.1097/01.DON.0000133155.04468.41
  18. Goracci C, Tavares AU, Ferrari M, et al. : The adhesion between fiber posts and root canal walls : comparison between microtensile and push-out bond strength measurements. Eur J Oral Sci, 112:353-361, 2004. https://doi.org/10.1111/j.1600-0722.2004.00146.x
  19. Tingey MC, Bush P, Levine MS : Analysis of mineral trioxide aggregate surface when set in the presence of fetal bovine serum. J Endod, 34:45-49, 2008
  20. Rahimi S, Ghasemi N, Bahari M, et al. : Effect of blood contamination on the retention characteristics of two endodontic biomaterials in simulated furcation perforations. J Endod, 39:697-700, 2013. https://doi.org/10.1016/j.joen.2013.01.002
  21. Reyes-Carmona JF, Felippe MS, Felippe WT : The biomineralization ability of mineral trioxide aggregate and Portland cement on dentin enhances the push-out strength. J Endod, 36:286-291, 2010. https://doi.org/10.1016/j.joen.2009.10.009
  22. Atmeh AR, Chong EZ, Watson TF, et al. : Dentincement interfacial interaction: calcium silicates and polyalkenoates. J Dent Res, 91:454-459, 2012. https://doi.org/10.1177/0022034512443068
  23. Camilleri J : Hydration characteristics of Biodentine and Theracal used as pulp capping materials. Dent Mater, 30:709-715, 2014. https://doi.org/10.1016/j.dental.2014.03.012
  24. Wang Z, Ma J, Haapasalo M, et al. : Acidic pH weakens the microhardness and microstructure of three tricalcium silicate materials. Int Endod J, 48:323-332, 2015. https://doi.org/10.1111/iej.12318
  25. Gandolfi MG, Siboni F, Prati C : Chemical-physical properties of TheraCal, a novel light-curable MTAlike material for pulp capping. Int Endod J, 45:571-579, 2012. https://doi.org/10.1111/j.1365-2591.2012.02013.x