DOI QR코드

DOI QR Code

Application of Yeongdong Illite to Remove Radiocesium for Severe Nuclear Accidents

원자력 중대 사고에 대비한 영동 지역 일라이트의 방사성 세슘 흡착 특성 평가

  • Hwang, Jeonghwan (Division of Earth and Environmental Research, Korea Basic Science Institute) ;
  • Choung, Sungwook (Division of Earth and Environmental Research, Korea Basic Science Institute) ;
  • Park, Chan-Soo (Division of Earth and Environmental Research, Korea Basic Science Institute) ;
  • Han, Jeong-Hee (Division of Earth and Environmental Research, Korea Basic Science Institute) ;
  • Jeon, Sodam (Division of Earth and Environmental Research, Korea Basic Science Institute)
  • 황정환 (한국기초과학지원연구원 지구환경연구부) ;
  • 정성욱 (한국기초과학지원연구원 지구환경연구부) ;
  • 박찬수 (한국기초과학지원연구원 지구환경연구부) ;
  • 한정희 (한국기초과학지원연구원 지구환경연구부) ;
  • 전소담 (한국기초과학지원연구원 지구환경연구부)
  • Received : 2016.09.20
  • Accepted : 2016.12.02
  • Published : 2016.12.30

Abstract

This study evaluated potential application of illite, which is produced at Yeongdong area in Korea, to remove radiocesium released to environmental system through severe nuclear accidents. The Yeongdong illite was formed by metamorphose of micaceous schist in hydrothermal condition, and composed of quartz, illite, and albite. Sorption distribution coefficient ($K_d$) of cesium by the Yeongdong illite was higher than the $K_d$ values for other clay minerals. It may be affected by preferential adsorption of cesium to Frayed Edge Sites (FES) on illite. Nonlinear isotherm models were suitable to describe the sorption processes for the Yeongdong illite. Its max. single layer capacity was $250,000{\mu}g\;kg^{-1}$ for cesium. Therefore, the Yeongdong illite could be an efficient and economic sorbent to prevent dispersion of radiocesium, and apply for remediation.

본 연구는 원자력 중대 사고 시, 환경에 유출된 방사성 세슘의 확산을 억제하기 위해 충북 영동지역 일라이트의 활용 가능성을 평가하였다. 영동 일라이트는 운모질 편암의 열수변질 작용에 의해 형성되었으며, 주요 구성 광물은 석영, 장석, 일라이트이다. 저농도 세슘 용액을 사용한 회분식 흡착 실험 결과, 영동 일라이트의 흡착 분배 계수($K_d$)는 약 $4,200L\;kg^{-1}$으로 다른 점토 광물에 비해 비교적 높은 값을 가지며, 이는 일라이트에 존재하는 풍화된 모서리면(FES)의 영향으로 판단된다. 영동 일라이트와 세슘의 흡착등온선은 비선형 흡착 특성을 나타내며 단일 표면 한계 흡착 능력이 $250,000{\mu}g\;kg^{-1}$으로 우수한 흡착능을 보여주어 방사성 세슘 흡착제로서의 사용 가능성을 입증하였다. 이러한 결과는 추후 방사능 누출 사고 등의 긴급 상황 발생 시, 영동 지역 일라이트를 오염 확산 방지 및 정화작업에 사용하기 위한 평가 자료로 활용될 것으로 기대된다.

Keywords

References

  1. Bellenger, J.P. and Staunton, S. (2008) Adsorption and desorption of $^{85}Sr$ and $^{137}Cs$ on reference minerals, with and without inorganic and organic surface coatings. Journal of Environmental Radioactivity, 99, 831-840. https://doi.org/10.1016/j.jenvrad.2007.10.010
  2. Benedicto, A., Missana, T., and Fernandez, A.M. (2014) Interlayer collapse affects on cesium adsorption onto illite. Environmental Science and Technology, 48, 4909-4915. https://doi.org/10.1021/es5003346
  3. Brouwer, E., Baeyens, E., Maes, A., and Cremers, A. (1983) Cesium and rubidium ion equilibriums in illite clay. The Journal of Physical Chemistry, 87(7), 1213-1219. https://doi.org/10.1021/j100230a024
  4. Chang, S., Choung, S., Um, W., and Chon, C.M. (2013) Effects of weathering processes on radioactive cesium sorption with mineral characterization in Korean nuclear facility site. Journal of The Mineralogical Society of Korea, 26(3), 209-218. https://doi.org/10.9727/jmsk.2013.26.3.209
  5. Chiang, P.N., Wang, M.K., Huang, P.M., Wang, J.J., and Chiu, C.Y. (2010) Cesium and strontium sorption by selected tropical and subtropical soils around nuclear facilities. Journal of Environmental Radioactivity, 101, 472-481. https://doi.org/10.1016/j.jenvrad.2008.10.013
  6. Cho, H.G., Park, O.H., Moon, D.H., Do, J.Y., and Kim, S.O. (2007) Phosphate adsorption of Youngdong illite, Korea. Journal of The Mineralogical Society of Korea, 20(4), 327-337.
  7. Cornell, R.M. (1993) Adsorption of cesium on minerals: A review. Journal of Radioanalytical and Nuclear Chemistry, Articles, 171(2), 483-500. https://doi.org/10.1007/BF02219872
  8. Datta, S.J., Moon, W.H., Choi, D.Y., Hwang, I.C., and Yoon, K.B. (2014) A novel vanadosilicate with hexadeca-coordinated $Cs^+$ ions as a highly effective $Cs^+$ remover. Angewandte Chemie, 126, 7331-7336. https://doi.org/10.1002/ange.201402778
  9. DePourcq, K., Ayora, C., Garcia-Gurierrez, M., Missana, T., and Carrera, J. (2015) A clay permeable reactive barrier to remove Cs-137 from groundwater: column experiments. Journal of Environmental Radioactivity, 149, 36-42. https://doi.org/10.1016/j.jenvrad.2015.06.029
  10. Fan, Q., Yamaguchi, N., Tanaka, M., Tsukada, H., and Takahashi, Y. (2014) Relationship between the adsorption species of cesium and radiocesium interception potential in soils and minerals: an EXAFS study. Journal of Environmental Radioactivity, 138, 92-100. https://doi.org/10.1016/j.jenvrad.2014.08.009
  11. Garcia-Gutierrez, M., Missana, T., Benedicto, A., Ayora, C., and DePourcq, K. (2014) Experimental adsorption studies on different materials selected for developing a permeable reactive barrier for radiocesium retention. 2014 Materials Research Society Proceedings, Boston, Massachusetts, November 30-December 5, 1665, 117-122.
  12. Hazotte, A.A., Peron, O., Abdelouas, A., Montavon, G., and Lebeau, T. (2016) Microbial mobilization of cesium from illite: the role of organic acids and siderophores. Chemical Geology, 428, 8-14. https://doi.org/10.1016/j.chemgeo.2016.02.024
  13. Hinton T.G., Kaplan, D.I., Knox, A.S., Coughlin, D.P., Nascimento, R.V., Watson, S.I., Fletcher, D.E., and Koo, B.J. (2006) Use of illite clay for in situ remediation of $^{137}Cs$-contaminated water bodies: field demonstration of reduced biological uptake. Environmental Science and Technology, 40, 4500-4505. https://doi.org/10.1021/es060124x
  14. Kim, E.Y., Cho, H.G., and Lee, S.J. (2000) The copper adsorption onto Dongchang illite ore, Yeongdong-Gun, Choungchungbuk-Do. Fall Joint Conference of The Geological Science in Korea (Abstract), The Geological Society of Korea, Daejeon, October 27-28, 87p.
  15. Kim, H.J., Hyun, Y., Kim, Y., and Hwang, S.I. (2011) A study on effective management scheme for soil and groundwater contaminated by radioactive materials due to nuclear accidents. Journal of Soil and Groundwater Environment, 16(6), 113-121. https://doi.org/10.7857/JSGE.2011.16.6.113
  16. Kim, J.O., Lee, S.M., and Jeon, C. (2014) Adsorption characteristics of sericite for cesium ions from an aqueous solution. Chemical Engineering Research and Design, 92, 368-374. https://doi.org/10.1016/j.cherd.2013.07.020
  17. Kim, Y. and Lee, E.J. (2004) The sorption properties of Cs on the surface of artificially weathered illite. Journal of The Mineralogical Society of Korea, 17(3), 235-243.
  18. Koh, S.M. and Song, M.S. (2003) Mineral resources and potential of illite-mica, Korea. The 4th Symposium of Industry Minerals, 18-30.
  19. Koh, S.M. (2008) Geological formation environment and mineralization age of the Daehyun sericite deposits in Bonghwa-gun, Gyeongsangbuk-do: Introduction of the new type in South Korea. Journal of The Geological Society of Korea, 44(4), 365-386.
  20. Lee, C.H., Park, J.M., and Lee, M.G. (2015) Competitive adsorption in binary solution with different mole ratio of Sr and Cs by zeolite A: adsorption isotherm and kinetics. Journal of Environmental Science International, 24(2), 151-162. https://doi.org/10.5322/JESI.2015.24.2.151
  21. Lee, J.J., Cho, J., and Kim, HT. (2011) Adsorption kinetic and thermodynamic studies of tricyclazole on granular activated carbon. Journal of Korean Society of Environmental Engineers, 33(9), 623-629. https://doi.org/10.4491/KSEE.2011.33.9.623
  22. Long, H., Wu, P., Yang, L., Huang, Z., Zhu, N., and Hu, Z. (2014) Efficient removal of cesium from aqueous solution with vermiculite of enhanced adsorption property through surface modification by ethylamine. Journal of Colloid and Interface Science, 428, 295-301. https://doi.org/10.1016/j.jcis.2014.05.001
  23. Missana, T., Benedicto, A., Garcia-Gutierrez, M., and Alonso, U. (2014) Modeling cesium retention onto Na-, K- and Ca-smectite: effects of ionic strength, exchange and competing cations on the determination of selectivity coefficients. Geochemica et Cosmochimica Acta, 128, 266-277. https://doi.org/10.1016/j.gca.2013.10.007
  24. Namiki, Y., Namiki, T., Ishii, Y., Koido, S., Nagase, Y., Tsubota, A., Tada, N., and Kitamoto,Y. (2012) Inorganic-organic magnetic nanocomposites for use in preventive medicine: a rapid and reliable elimination system for cesium. Pharmaceutical Research, 29(5), 1404-1418. https://doi.org/10.1007/s11095-011-0628-x
  25. Poinssot, C., Baeyens, B., and Bradbury, M.H. (1999) Experimental and modelling studies of caesium sorption on illite. Geochimica et Cosmochimica Acta, 63(19/20), 3217-3227. https://doi.org/10.1016/S0016-7037(99)00246-X
  26. Rajec, P., Sucha, V., Eberl, D.D., Srodon, J., and Elsass, F. (1999) Effect of illite particle shape on cesium sorption. Clays and Clay Minerals, 47(6), 755-760. https://doi.org/10.1346/CCMN.1999.0470610
  27. Vejsada, J., Hradil, D., Randa, Z., Jelinek, E., and Stulik, K. (2005) Adsorption of cesium on Czech smectite-rich clays - a comparative study. Applied Clay Science, 30, 53-66. https://doi.org/10.1016/j.clay.2005.03.003
  28. Volchek, K., Miah, M.Y., Kuang, W., DeMaleki, Z., and Tezel, F.H. (2011) Adsorption of cesium on cement mortar from aqueous solutions. Journal of Hazardous Materials, 194, 331-337. https://doi.org/10.1016/j.jhazmat.2011.07.111
  29. Yang, H.M., Jang, S.C., Hong, S.B., Lee, K.W., Roh, C.H, Huh, Y.S., and Seo, B.K. (2016) Prussian blue-functionalized magnetic nanoclusters for the removal of radioactive cesium from water. Journal of Alloys and Compounds, 657, 387-393. https://doi.org/10.1016/j.jallcom.2015.10.068
  30. Yun, S.K. and Park, B.K. (1968) Explanationary text of the geological map of Seolcheon sheet, scale 50,000. Geological Survey of Korea.

Cited by

  1. Synthesis of Adsorbent Fixed with Prussian Blue Based by Illite and Adsorption of Soluble Radioactive Cesium (137Cs) vol.41, pp.1, 2019, https://doi.org/10.4491/KSEE.2019.41.1.24
  2. 유기고분자로 표면 개질 된 입상활성탄을 이용한 프러시안 블루 고정화 및 Cs+ 제거 vol.32, pp.5, 2016, https://doi.org/10.11001/jksww.2018.32.5.399