DOI QR코드

DOI QR Code

Ti 합금의 용체화열처리와 시효열처리에 따른 부식거동

The Study of Corrosion Behavior for Solution and Aging Heat Treated Ti alloy

  • 백신영 (목포해양대학교 기관.해양경찰학부)
  • Baik, Shin-Young (Division of Marine Engineering & Coast Guard, Mokpo National Maritime University)
  • 투고 : 2015.12.07
  • 심사 : 2016.02.25
  • 발행 : 2016.02.28

초록

티타늄은 표면에 형성되는 보호성 부동태 피막 때문에 일반부식과 해수에서 내식성이 강하지만 염산, 황산, 인산 등의 산에서는 보호성 산화물 피막이 파괴된다고 알려져 있다. 본 연구에서는 Ti에 Al 및 V등을 첨가한 ${\alpha}+{\beta}$계에 대하여 $1066^{\circ}C$$966^{\circ}C$에서 5시간 용체화 열처리를 실시하고, 이 시편을 $550^{\circ}C$, $600^{\circ}C$, 및 $650^{\circ}C$에서 각각 1시간, 4시간, 8시간 및 16시간 시효열처리한 후 마이크로비커스 경도를 측정하고, 이 시편을 1N $H_2SO_4$ 용액에서 전기화학적 분극법으로 부식을 계측하였으며, 분극을 마친 시편의 표면을 현미경 조직사진으로 부식상태를 검토하였다. 시험 결과 용체화열처리한 시편이 모재와 시효열처리한 시편보다 높은 내식성을 나타내며. 용체화 온도가 높고 시간이 길어질수록 내식성은 증가하였다.

Titanium is resistant to general corrosion and in sea water because of the passivity layer film on the surface of material, but may be attacked by environments that cause breakdown of the protective oxide layer including hydrochloric, sulfuric and phosphoric acids. In this study, the Ti alloys were solution heat treatment 5hours at $1066^{\circ}C$ and $966^{\circ}C$, and followed by aging heat treated, 1, 4, 8 and 16 hours in $500^{\circ}C$, $600^{\circ}C$ and $650^{\circ}C$ respectively. The heat treated specimens were measured micro Vicker's hardness, and then accomplished electrochemical polarization test for comparing corrosion in 1N sulfuric acid solution. Additionally, micro structures were taken for corrosion tested specimens. The results showed that corrosion resistance was higher in solution heat treated alloy than base and age heat treated metal. Measured corrosion resistants were increased as increasing aging heat treatment time and temperature.

키워드

참고문헌

  1. Baik, S. Y.(2000), The Effect of age Heat-treatment to the Electrochemical Corrosion Behavior on Ti-6Al-4V, Journal of the Korean Society of Marine Engineering, Vol. 24, No. 6, pp. 742-749.
  2. Baik, S. Y.(2002) A Study on Annealing Heat-treatment for Ti (Grade 2) by Electrochemical Methods, Journal of the Korean Society of Marine Engineering, Vol. 26, No. 1, pp. 90-98.
  3. Baik, S. Y.(2013), A Study on the Galvanic Corrosion for Zirconium with Titanium and 316L Stainless Steel. Journal of The Korean Society of Marine Environment & Safety, Vol. 19, No. 3, pp, 285-289. https://doi.org/10.7837/kosomes.2013.19.3.285
  4. Baik, S. Y. and E. Y. Na(2003), The Effect of Heat-treatment on the Corrosion Resistance for Ti-6Al-4V, Journal of the Korean Society of Marine Engineering, Vol. 27, No. 3, pp. 453-459.
  5. Betterridge, W.(1974), The Nimonic Alloys, 2nd Edtion, N.Y Edward Arnold Co., p. 73.
  6. Choi, S. K., H. I. Kim and I. M. Park(1991), Corrosion Behavior of Cast Ti for Dental Use, Korean Journal of Dental Materials, Vol. 18, No. 2, pp. 137-147.
  7. Collings, E. W.(1986), The Physical Metallurgy of Titanium Allots, American Society of Metals, pp. 148-160.
  8. Sims, C. T. and W. C. Hagel(1972), The Superalloys, John Wiley & Sons Inc., New York, p. 47.

피인용 문헌

  1. Corrosion-Resistant High-Entropy Alloys: A Review vol.7, pp.2, 2017, https://doi.org/10.3390/met7020043