DOI QR코드

DOI QR Code

Correcting the Sound Velocity of the Sediments in the Southwestern Part of the East Sea, Korea

동해 남서해역 퇴적물의 음파전달속도 보정

  • Kim, Sora (Department of Energy Resource Engineering, Pukyong National University) ;
  • Kim, Daechoul (Department of Energy Resource Engineering, Pukyong National University) ;
  • Lee, Gwang-Soo (Department of Petroleum and Marine Resources, Korea Institute of Geoscience and Mineral Resources)
  • 김소라 (부경대학교 에너지자원공학과) ;
  • 김대철 (부경대학교 에너지자원공학과) ;
  • 이광수 (한국지질자원연구원 석유해저연구본부)
  • Received : 2016.10.17
  • Accepted : 2016.12.25
  • Published : 2016.12.31

Abstract

To investigate the in-situ sound velocity of sediment in the southwestern part of the East Sea, the laboratory sound velocity was measured using the pulse transmission technique. The sediment sound velocity measured in laboratory was corrected to in-situ sound velocity based on the seafloor temperature, seawater sound velocity, Kim et al. (2004) model, and Hamilton (1980) model. The distribution of the corrected in-situ sound velocity applying Kim et al. (2004) and Hamilton (1980) models reflects the characteristics of sediments of the study area and shows a similar distribution pattern. The correction for in-situ sound velocity was mostly influenced by seafloor temperature. Then, correction of sound velocity using seafloor sediment temperature data should be accomplished for conversion of laboratory data to in-situ sound velocity.

동해 남서해역 퇴적물의 현장 음파전달속도를 파악하기 위하여 신호투과법을 이용하여 퇴적물의 실험실 음파전달속도를 측정하였다. 측정된 실험실 음파전달속도는 해저면 온도, 해수 음파전달속도, Kim et al. (2004)과 Hamilton (1980) 모델을 적용하여 현장 음파전달속도로 보정하였다. Kim et al. (2004)과 Hamilton (1980)의 현장 음파전달속도는 연구지역 퇴적물 특성을 반영하며, 유사한 분포를 보인다. 현장 음파전달속도 보정에는 해저면 온도의 영향을 크게 받는 것을 확인할 수 있다. 따라서 퇴적물의 실험실 음파전달속도를 통해 현장 음파전달속도를 파악하기 위해서는 해저표층 온도 자료를 통한 온도 보정이 반드시 수행되어야 한다.

Keywords

References

  1. Arai, F., Kitazato, R., Horibe, H., and Machida, H., 1981, Late Quaternary tephrochronology and paleogeography of the sediments of the Japan Sea. Quaternary Research, 20, 209-230. https://doi.org/10.4116/jaqua.20.209
  2. Cho, Y.K. and Kim, K., 2000, Branching mechanism of the Tsushima current in the Korea Strait. Journal of Physical Oceanography, 30, 2788-2797. https://doi.org/10.1175/1520-0485(2000)030<2788:BMOTTC>2.0.CO;2
  3. Choi, D.L., Oh, J.K., Lee, C.W., and Woo, H.J., 1997, High-resolution seismic characteristics of the Holocene mud deposits in the Southeast Innershelf, Korea. Journal of the Korean Society of Oceanography, 2, 8-13. (in Korean)
  4. Choi, J.Y. and Park, Y.A., 1993, Distributions and textural characters of the bottom sediments on the continental shelves, Korea. The Journal of the Oceanological Society of Korea, 28, 259-271. (in Korean)
  5. Chough, S.K., Lee, H.J., and Yoon, S.H., 2000, Marine geology of Korean seas (2nd edition). Elsevier, Amsterdam, Netherlands, 313 p.
  6. Chough, S.K., Lee, S.H., Kim, J.W., Park, S.C., Yoo, D.G., Han, H.S., Yoon, S.H., Oh, S.B., KIm, Y.B., and Back, G.G., 1997, Chirp (2-7 kHz) echo characters in the Ulleung Basin. Geoscience Journal, 1, 143-153. https://doi.org/10.1007/BF02910206
  7. Chun, J.H., Huh, S., Han, S.J., Shin, D.H., Cheong, D.K., Hong, K.H., and Kim, S.H., 1999, Sediment characteristics of waste disposal sites in the Southwestern Ulleung Basin, the East Sea. Journal of the Korean Society of Oceanography, 4, 312-322. (in Korean)
  8. Clay, C.S. and Medwin, H., 1972, Acoustical oceanography principles and applications. Wiley Interscience, 544 p.
  9. Furuta, T., Fujioka, K., and Arai, F., 1986, Widespread submarine tephras around Japan-Petrographic and chemical properties. Marine Geology, 72, 125-142. https://doi.org/10.1016/0025-3227(86)90103-9
  10. Hahn, J.Y., Lee, H.U., and Lee, B.K., 2007, Influence of the geoacoustic parameters of seabed appearing in the broadband interference pattern by moving targets. Journal of the Korea Institute of Military Science and Technology, 10, 43-50. (in Korean)
  11. Hamilton, E.L., 1971, Prediction of in-situ acoustic and elastic properties of marine sediments. Geophysics, 36, 266-284. https://doi.org/10.1190/1.1440168
  12. Hamilton, E.L., 1980, Geoacoustic modeling of the sea floor. Journal of the Acoustical Society of America, 68, 1313-1339. https://doi.org/10.1121/1.385100
  13. Hamilton, E.L. and Bachman, R.T., 1982, Sound velocity and related properties of marine sediments. Journal of Acoustic Society of America, 72, 1891-1904. https://doi.org/10.1121/1.388539
  14. Jung, J.H., Lee, G.S., Seo, Y.K., Kim, D.C., Lee, G.H., and Park, S.C., 2004, Correction of sediment sound velocity in the South Sea Shelf of Korea. The Journal of Acoustical Society of Korea, 23, 433-436. (in Korean)
  15. Kawabe, M., 1982, Branching of Tsushima Current in the Japan Sea, Part I. Data analysis. Journal of the Oceanographical Society of Japan, 38, 95-107. https://doi.org/10.1007/BF02110295
  16. Kim, D.C., Kim, G.Y., Jung, J.H., Seo, Y.K., Wilkens R.H., Yoo, D.C., Lee, G.H., Kim, J.C., Yi, H.I., and Cifci Gunay, 2008, Laboratory/In situ sound velocities of shelf sediments in the South Sea of Korea. Journal of Fish Science Technology, 11, 103-112.
  17. Kim, D.C., Kim, G.Y., Seo, Y.K., Ha, D.H., Ha, I.C., Yoon, Y.S., and Kim, J.C., 1999, Automated velocity measurement technique for unconsoludated marine sediment. Journal of the Korean Society of Oceanography, 4, 400-404. (in Korean)
  18. Kim, D.C., Kim, G.Y., Yi, H.I., Seo, Y.K., Lee, G.S., Jung, J.H., and Kim, J.C., 2012a, Geoacoustic provinces of the South Sea shelf off Korea. Quaternary International, 263, 139-147. https://doi.org/10.1016/j.quaint.2012.02.035
  19. Kim, D.C., Lee, G.H., Seo, Y.K., Kim, G.Y., Kim, S.Y., Kim, J.C., Park, S.C., and Roy Wilkens, 2010, Distribution and acoustic characteristics of shallow gas in the Korea Strait Shelf Mud off SE Korea. Marine Georesources and Geotechnology, 22, 21-31.
  20. Kim, D.H., 2008, Structure of current and coastal upwelling off the southeast coast of Korea. Pukyong National University, Busan, Korea, 81 p. (in Korean)
  21. Kim, G.Y., Kim, D.C., and Kim, J.C., 2004, Ultrasonic characterization of fluid mud: effect of temperature. The Journal of the acoustical society of Korea, 23, 140-145.
  22. Kim, G.Y., Yoo, D.G., and Ryu, B.J., 2009, Sound velocity property of sediment containing gas hydrate in the Ulleung Basin, East Sea. Journal of the Acoustic Society of Korea, 5, 424-431. (in Korean)
  23. Kim, S.P., Min, G.H., Lee, C.W., Ryu, B.J., Yoo, D.G., Kim, G.Y., Kong, G.S., Bahk, J.J., Kim, K.O., Kwon, U.I., Lee, G.S., Kang, K.N., Yoon, Y.H., Kim, J.K., Kim, Y.G., Choi, J.K., Seo G.S., Jo, D.W., and Koo, B.Y., 2012b, Marine geological and geophysical mapping of the Korean seas. Korea Institute of Geoscience and Mineral Resources, GP2010-013-2012, 344 p. (in Korean)
  24. Koo, B.Y., Kim, S.P., Lee, G.S., and Chung, G.S., 2014, Seafloor morphology and surface sediment distribution of the Southwstern part of the Ulleung Basin, East Sea. Journal of the Korean Earth Science Society, 35, 131-146. (in Korean) https://doi.org/10.5467/JKESS.2014.35.2.131
  25. Lee, H.J., Chun, S.S., Yoon, S.H., and Kim, S.R., 1993, Slope stability and geotechnical properties of sediment of the southern margin of Ulleung Basin, East Sea (Sea of Japan). Marine Geology, 110, 31-45. https://doi.org/10.1016/0025-3227(93)90103-3
  26. Lim, D.B., 1973, The movement of the cold water in the Korea Strait. Journal of the Korean Society of Oceanography, 8, 46-52.
  27. Lurton, X., 2002, An introduction to underwater acoustics: principles and applications. Chichester, U.K: Springer Paraxis Publishing Ltd, 345 p.
  28. Mackenzie, K.V., 1981, Nine-term equation for sound speed in the oceans. Journal of the Acoustical Society of America, 70, 807-812. https://doi.org/10.1121/1.386920
  29. Marine Environment Information System (MEIS), 2016, Verical disctibution of temperature and salinity in Southern Part of East Sea. https://www.meis.go.kr/rest/sea_occur#block18. (September 10th 2016)
  30. Nafe, J.E. and Drake, C.L., 1963, Physical properties of marine sediments in the sea. edited by M.N. Hill. Interscience. N.Y., 794-815.
  31. Park, K.J., Kim, D.C., Lee, G.S., Bae, S.H., and Kim, G.Y., 2015, Implementation of acoustic properties measurement system based on LabVIEW using PXI for marine sediment. Journal of the Korean Society for Marine Environment and Energy, 18, 216-222. (in Korean) https://doi.org/10.7846/JKOSMEE.2015.18.3.216
  32. Park, S.C. and Chu, K.S., 1991, Dispersal pattern of riverderived fine-grained sediment on the inner shelf of the Korea strait. In: Takano, K. (Ed), Oceanography of Asian Marginal Sea. Elsevier Oceanography Series, 54, 231-240.
  33. Park, Y.A. and Choi, J.Y., 1986, Factor analysis of the continental shelf sediments off the southeast coast of Korea and its implication to the depositonal environment. Journal of the Oceanological Society of Korea, 21, 34-45.
  34. Ryang, W.H., Kim, S.P., Kim, D.C., and Hahn, J.Y., 2016, Geoacoustic model of coastal bottom strata at Jeongdongjin in the Korean Continental Margin of the East Sea. Journal of the Korean Earth Science Society, 37, 200-211. (in Korean) https://doi.org/10.5467/JKESS.2016.37.4.200
  35. Sears, F.M. and Bonner, B.P., 1981, Ultrasonic attenuation measurement by spectral ratios utilizing signal processing techniques. IEEE Trans. Geoscience and Remote Sensing, GE-19, 95-99. https://doi.org/10.1109/TGRS.1981.350359
  36. Toksoz, M.M., Johnston, D.H., and Timur, A., 1979, Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements. Geophysics, 44, 681-690. https://doi.org/10.1190/1.1440969
  37. Yoon, J.H., 1982, Numerical experiment on the circulation in the Japan Sea. Part I: Formation of the East Korean Warm Current. Journal of the Oceanographical Society of Japan, 38, 43-51. https://doi.org/10.1007/BF02110289