DOI QR코드

DOI QR Code

Improvement and Validation of Convective Rainfall Rate Retrieved from Visible and Infrared Image Bands of the COMS Satellite

COMS 위성의 가시 및 적외 영상 채널로부터 복원된 대류운의 강우강도 향상과 검증

  • Moon, Yun Seob (Department of Environmental Education, Korea National University of Education) ;
  • Lee, Kangyeol (Division of Earth Environment System, Pusan National University)
  • 문윤섭 (한국교원대 환경교육과) ;
  • 이강열 (부산대학교 대기환경과학과)
  • Received : 2016.12.05
  • Accepted : 2016.12.22
  • Published : 2016.12.31

Abstract

The purpose of this study is to improve the calibration matrixes of 2-D and 3-D convective rainfall rates (CRR) using the brightness temperature of the infrared $10.8{\mu}m$ channel (IR), the difference of brightness temperatures between infrared $10.8{\mu}m$ and vapor $6.7{\mu}m$ channels (IR-WV), and the normalized reflectance of the visible channel (VIS) from the COMS satellite and rainfall rate from the weather radar for the period of 75 rainy days from April 22, 2011 to October 22, 2011 in Korea. Especially, the rainfall rate data of the weather radar are used to validate the new 2-D and 3-DCRR calibration matrixes suitable for the Korean peninsula for the period of 24 rainy days in 2011. The 2D and 3D calibration matrixes provide the basic and maximum CRR values ($mm\;h^{-1}$) by multiplying the rain probability matrix, which is calculated by using the number of rainy and no-rainy pixels with associated 2-D (IR, IR-WV) and 3-D (IR, IR-WV, VIS) matrixes, by the mean and maximum rainfall rate matrixes, respectively, which is calculated by dividing the accumulated rainfall rate by the number of rainy pixels and by the product of the maximum rain rate for the calibration period by the number of rain occurrences. Finally, new 2-D and 3-D CRR calibration matrixes are obtained experimentally from the regression analysis of both basic and maximum rainfall rate matrixes. As a result, an area of rainfall rate more than 10 mm/h is magnified in the new ones as well as CRR is shown in lower class ranges in matrixes between IR brightness temperature and IR-WV brightness temperature difference than the existing ones. Accuracy and categorical statistics are computed for the data of CRR events occurred during the given period. The mean error (ME), mean absolute error (MAE), and root mean squire error (RMSE) in new 2-D and 3-D CRR calibrations led to smaller than in the existing ones, where false alarm ratio had decreased, probability of detection had increased a bit, and critical success index scores had improved. To take into account the strong rainfall rate in the weather events such as thunderstorms and typhoon, a moisture correction factor is corrected. This factor is defined as the product of the total precipitable waterby the relative humidity (PW RH), a mean value between surface and 500 hPa level, obtained from a numerical model or the COMS retrieval data. In this study, when the IR cloud top brightness temperature is lower than 210 K and the relative humidity is greater than 40%, the moisture correction factor is empirically scaled from 1.0 to 2.0 basing on PW RH values. Consequently, in applying to this factor in new 2D and 2D CRR calibrations, the ME, MAE, and RMSE are smaller than the new ones.

본 연구의 목적은 2011년 4월 22일부터 10월 22일까지 우리나라에서 강수가 있는 총 75일 동안 COMS 위성의 적외 채널 $10.8{\mu}m$ 휘도 온도(IR), 적외 채널 $10.8{\mu}m$와 수증기 채널 $6.7{\mu}m$의 휘도 온도차(IR-WV), 정규화 된 가시반사도(VIS)와 기상 레이더의 강우강도를 이용하여 2-D와 3-D 대류운의 강우강도 (CRR) 조견표를 향상시키는 것이다. 특별히 한국형 2-D와 3-D CRR 조견표를 검증하기 위해 2011년 강수가 있는 24일 동안의 기상 레이더 강우강도 자료가 사용된다. 2-D와 3-D CRR 조견표는 각 채널의 등급 범주별 강우 총수와 비강우 총수의 행렬을 이용하여 구한 강우 확률에 평균 누적강우강도와 최대 강우강도를 각각 곱함으로써 2-D (IR, IR-WV)와 3-D (IR, IR-WV, VIS) 조견표의 기본과 최대 행렬을 얻을 수 있다. 최종적으로 새로운 2-D와 3-D의 CRR 조견표는 경험적으로 기본과 최대 강우강도 행렬의 회귀 분석으로 얻어진다. 그 결과 새로운 CRR 조견표는 기존보다 낮은 IR 휘도 온도, 낮은 IR-WV 휘도 온도차일 때에도 비교적 많은 강우 현상을 나타내며, $10mm\;h^{-1}$ 이상의 강우강도 영역이 확대되어 나타난다. 정확도와 범주별 통계가 주어진 기간 동안 발생했던 CRR 자료에 대해 계산된다. 새로운 2-D와 3-D CRR 조견표의 평균 오차, 평균절대 오차, 제곱근평균 오차가 기존 조견표보다 작게 나타나며, 예측 거짓경고비율은 감소하고, 탐지확률은 증가하며, 임계성공지수는 개선된다. 태풍과 뇌우와 같은 기상 이변에서의 강한 호우를 고려하기 위해서 습윤 보정 계수를 교정한다. 이 인자는 수치모델이나 COMS에서 복원한 지면에서 500 hPa까지 평균한 총가강수량과 상대습도의 곱 (PW RH)으로 정의된다. 이 연구에서는 PW RH에 근거하여 IR 운정 휘도 온도가 210 K 이하일 때, 상대습도가 40% 이상일 때 1에서 2사이를 경험적으로 정한다. 새로운 2-D와 3-D CRR 조견표를 적용한 결과 평균 오차, 평균 절대 오차, 제곱근 평균 오차가 줄어든다.

Keywords

References

  1. AEMET (Agencia Estatal de Meteorologia), 2011, Algorithm theoretical basis document for "convective rainfall rate" (CRR-PGE05 v3.1). SAF/NWC/CDOP/INM/SCI/ATBD/05, Issue 3, Rev. 1.1.
  2. AEMET (Agencia Estatal de Meteorologia), 2011, Validation report for "convective rainfall rate" (CRRPGE05 v3.1). SAF/NWC/CDOP/INM/SCI/VR/06, Issue 1, Rev. 0.
  3. Arkin, P.A. and Meisner, B.N., 1987, The relationship between largescale convective rainfall and cold cloud over the Eestern Hemisphere during 1982-84. Monthly Weather Review, 115, 51-74. https://doi.org/10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2
  4. Bellon, A., Lovejoy, S., and Austin, G.L., 1980, Combining satellite and radar data for the short-range forecasting of precipitation. Monthly Weather Review, 108, 1554-1566. https://doi.org/10.1175/1520-0493(1980)108<1554:CSARDF>2.0.CO;2
  5. Chen, M. and Brown, R., 1995, Delineation of precipitation areas by correlation of METEOSAT visible and infrared data with radar data. Monthly Weather Review, 123, 2743-2757. https://doi.org/10.1175/1520-0493(1995)123<2743:DOPABC>2.0.CO;2
  6. Dixon, M. and Wiener, G., 1993, TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting-A radar-based methodology. Journal of Atmospheric and Oceanic Technology, 10, 785-797. https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
  7. Goodman, B., Martin, D.W., Menzel, W.P., and Cutrim, E.C., 1994, A non-linear algorithm for estimating 3-hourly rain rates over Amazonia from GOES/VISSR observations. Remote Sensing Reviews, 10, 169-177. https://doi.org/10.1080/02757259409532243
  8. Johnson, J.T., 1998, The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm. Weather and Forecasting, 13, 263-276. https://doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2
  9. Jung, S.W., Lee, K.W., Kim, H.W., and Gook B.J., 2011, Development of algorithm to trace and distinguish convective cell using the 3D radar reflectivity. Atmosphere, Korean Meteorological Society, 21, 243-256. (in Korean)
  10. Lee, D.I. and Ryu, C.S., 2012, A comparative study of rain intensities retrieved from radar and satellite observations: two cases of heavy rainfall events by Changma and Bolaven (TY15). Journal of Korean Earth Science Society, 33, 569-582. (in Korean) https://doi.org/10.5467/JKESS.2012.33.7.569
  11. Luque, A., Gomez, I., and Manso, M., 2006, Convective rainfall rate multi-channel algorithm for Meteosat-7 and radar derived calibration matrices. Atmosfera, 19, 145-168.
  12. Oh, S.G., Suh, M.S., and Lee, Y.J., 2010, On the relation between cloud-to-ground lightning and rainfall during 2006 and 2007 summer cases. Journal of Korean Earth Science Society, 31, 749-761. (in Korean) https://doi.org/10.5467/JKESS.2010.31.7.749
  13. Oroza, S.A., 2008, Two satellite-based rainfall algorithms, calibration methods and post-processing corrections applied to mediterranean flood cases, Thesis doctoral presentada por Angel Luis de Luque Solheim, Universitat de les Illes Balears.
  14. Scofield, R.A., 1987, The NESDIS operational convective precipitation technique. Monthly Weather Review, 115, No. 8, 1773-1792. https://doi.org/10.1175/1520-0493(1987)115<1773:TNOCPE>2.0.CO;2
  15. Seo, E.K., 2012, Rainfall Characteristics in the Tropical Oceans: Observations using TRMM TMI and PR. Journal of Korean Earth Science Society, 33, 113-125. (in Korean) https://doi.org/10.5467/JKESS.2012.33.2.113
  16. Vicente, G.A., 1996, Algorithm for rainfall rate estimation using a combination of GOES-8 11.0 mm and 3.9 mm measurements, Proceedings of the Eighth Conference on Satellite Meteorology and Oceanography. American Meteorological Society, 274-278.
  17. Vicente, G.A., Scofield, R.A., and Menzel, W.P., 1998, The operational GOES infrared rainfall estimation technique. Bulletin of the American Meteorological Society, 79, 1883-1898. https://doi.org/10.1175/1520-0477(1998)079<1883:TOGIRE>2.0.CO;2

Cited by

  1. Improvement of Non-linear Estimation Equation of Rainfall Intensity over the Korean Peninsula by using the Brightness Temperature of Satellite and Radar Reflectivity Data vol.39, pp.2, 2018, https://doi.org/10.5467/JKESS.2018.39.2.131