DOI QR코드

DOI QR Code

Geocentric parallax measurements of Near-Earth Asteroid using Baselines with domestic small-size observatories

국내 소형천문대 기선을 이용한 근접 소행성 지심시차 측정

  • Jeong, Eui Oan (Department of Earth Science Education, Korea National University of Education) ;
  • Sohn, Jungjoo (Department of Earth Science Education, Korea National University of Education)
  • 정의완 (한국교원대학교 지구과학교육과) ;
  • 손정주 (한국교원대학교 지구과학교육과)
  • Received : 2016.12.07
  • Accepted : 2016.12.22
  • Published : 2016.12.31

Abstract

We cooperated with four domestic educational astronomical observatories to construct a baseline and perform simultaneous observations to determine the geocentric parallax, distance, and motion of 1036 Ganymed, an Amor asteroid near the Earth. Observations were made on the day when simultaneous observations were possible from September to November 2011. Measured distances of 1036 Ganymed were 0.394 AU on Sept. 26, 0.365 AU on Oct. 11, and 0.340 AU on Oct. 25, respectively, which were within the error range as compared with the measured distances proposed by the US Jet Propulsion Laboratory. The 1036 Ganymed showed a tilting motion during the observation period, and the tangential angular velocities were measured at $0.037-0.052^{{\prime {\prime}}\;sec^{-1}$. Through this study, it was shown that the simultaneous observations among educational astronomical observations can obtain distance measurements with an error range of about 5% for asteroids near 0.4 AU. And it expected to be used as a research & education program emphasizing collaborative observation activities based on a network between observatories.

국내 교육용 천문대 네 곳과의 협력으로 세 개의 기선을 구축 및 동시 관측을 수행하여, 지구근접천체 Amor족 소행성인 1036 Ganymed의 지심시차와 거리, 운동 상태를 알아보았다. 관측은 2011년 9월에서 11월 동안, 동시 관측이 가능한 날에 이루어졌다. 1036 Ganymed의 거리는 9월 26일 0.40 AU, 10월 11일 0.40 AU, 10월 25일 0.34 AU 이었고, 각각은 미국 제트추진연구소가 제시하는 측정거리와 비교한 결과 오차 범위내의 값이었다. 1036 Ganymed는 관측기간 동안 순행 운동을 보였고, 접선 각속력은 $0.04-0.05^{{\prime}{\prime}}\;sec^{-1}$로 측정되었다. 본 연구를 통해 국내에 있는 교육용 천문대들의 동시 관측으로 0.4 AU 부근의 소행성에 대해 약 5% 정도의 오차 범위를 가지는 거리 측정치를 얻을 수 있음을 보였다. 이로부터, 교육용 천문대 간의 네트워크를 기반으로 한 협력 관측 수행이 이루어지고 새로운 연구연계 교육프로그램의 유형으로 활용 될 수 있을 것으로 기대된다.

Keywords

References

  1. Birtwhistle, P., and Robson, M., 2006, Direct determination of NEO distance by parallax
  2. Carroll, B.W., and Ostlie, D.A., 2007, An introduction to Modern Astrophysics, Pearson, 832, 834
  3. Chun, M.Y., Han, W.Y., Kim, S.L., Moon, H.-K., Shin, J.S., and Han, I,W., 2000, NEOs Tracking Surveillance Research, KASI Research Report
  4. Fix, J.D., 2008, Astronomy journey to the Cosmic Frontier, Mcgrawhill, 357
  5. Han, W.Y., 2002, Research Activities in NEOs Lab., KASI NRLWorkshop, 2-13.
  6. Harris, A.W., 1998. Evaluation of ground-based optical surveys for near-Earth asteroids. Planet. Space Sci. 46, 283-290. https://doi.org/10.1016/S0032-0633(97)00036-6
  7. Kim B.K., 1987, Estimating size distribution of early astroid, Master thesis.
  8. Kiselev, N.N., Chernova, G.P., and Lupishko, D.F. 1994, Polarimetry of asteroids 1036 Ganymede and 1627 Ivar, Kinemat. Fiz. Nebesn. Tel, 10, 35
  9. Kwon S.G., 2002, 16" Minor planet observatory code using 0.4 m telescope & CCD photometry of the asteroid 55 pandora, Master thesis.
  10. Jedicke, R., Morbidelli, A., Spahr, T., Petit, J.-M., and Bottke, W.F. 2003. Earth and space-based NEO survey simulations: prospects for achieving the Spaceguard Goal. Icarus 161, 17-33. https://doi.org/10.1016/S0019-1035(02)00026-X
  11. Jeon, Y.B., 2002, Astroid tracking observation and result, KASI, NRL Workshop, 17
  12. McFadden, L.-A., Tholen, D.J., and Veeder, G.J., 1989. Physical Properties of Aten, Apollo, and Amor Asteroids. In: Asteroids II, University of Arizona Press, Tucson, 442-467.
  13. Moon H.-K., 2007, Near earth object survey simulations: prospects for spaceguard goal and assessment of population models, Ph. D. thesis.
  14. Tholen, D. 1989, in Asteroids II, University of Arizona Press, Tucson, 1139
  15. Raymond, S.N., Miknaitis, G., Fraser, O.J., Garg, A., Hawley, S.N., Jedicke, R., Quinn, T., Rockosi, C.M., Stubbs, C.W., Anderson, S.F., Hogan, C.J., Ivezic, Z., Lupton, R.H., West, A.A., Brewington, H., Brinkmann, J., Harvanek, M., Kleinmman, S.J., Krzesinki, J., Long, D., Neilson, E.H., Newman, P.R., Nitta, A., and Snedden, S.A., 2004, A strategy for finding near-Earth objects with the SDSS telescope. AJ 127, 2978-2987. https://doi.org/10.1086/383210
  16. Steel, D., 1995. Asteroid detection efficiencies for telescope systems at Siding Spring. Publ, Astron. Soc. Aust. 12, 202-214. https://doi.org/10.1017/S1323358000020282
  17. Stokes, G.H., Shelly, F., Viggh, H.E.M., Blythe, M.S., and Stuart, J.S., 1998, The Lincoln Near-Earth Asteroid Research (LINEAR) Program. Lincoln Laboratory Journal 11, 27-40.
  18. Woo, H.S., 2001, CCD photometry of astroid 165 Loreley, Master thesis.
  19. Yoon, Y.-S., Choi, J.-S., and Kim, H.-W., 2011, Technological Trends in NEO Space Missions, Current industrial and technological trends in aerospace, 2011, 9(1), 102-109.
  20. Amor Asteroid, http://neo.jpl.nasa.gov/faq/#ast
  21. JPL SSDG, http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=1036+Ganymed
  22. Raab, H., 2004, Astrometrica Software, online at http://www.astrometrica.at/