DOI QR코드

DOI QR Code

Isolation and characterization of lactic acid bacteria for use as silage additives

사일리지 제조를 위한 유산균 탐색 및 특성연구

  • Ro, Yu-Mi (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA)) ;
  • Lee, Gwan-Hyeong (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA)) ;
  • Park, InCheol (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA)) ;
  • Kim, Wan-Gyu (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA)) ;
  • Han, Byeong-Hak (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA)) ;
  • You, Jaehong (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA)) ;
  • Ahn, Jae-Hyung (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA))
  • 노유미 (국립농업과학원 농업미생물과) ;
  • 이관형 (국립농업과학원 농업미생물과) ;
  • 박인철 (국립농업과학원 농업미생물과) ;
  • 김완규 (국립농업과학원 농업미생물과) ;
  • 한병학 (국립농업과학원 농업미생물과) ;
  • 유재홍 (국립농업과학원 농업미생물과) ;
  • 안재형 (국립농업과학원 농업미생물과)
  • Received : 2016.10.25
  • Accepted : 2016.11.22
  • Published : 2016.12.31

Abstract

Sixteen lactic acid bacterial strains were isolated from silage and cow dung samples, and characterized to identify their potential as silage additives. They were identified as the members of the genera Lactobacillus, Enterococcus, and Weissella, and clustered into nine groups based on the sequences of the genes for 16S rRNA, RNA polymerase alpha subunit, 60-kDa heat shock protein, and phenylalanyl-tRNA synthase alpha subunit. Among them, the three strains which were genetically similar to L. plantarum showed the fastest growth and pH decrease in MRS and rye extract media, the highest numbers of available carbohydrates, and the widest ranges of pH, temperature, and salinity for growth. In addition, they showed no amplified DNA products in the PCR examination targeting the genes for the production of biogenic amines, and the MRS media where they had been cultured showed relatively high inhibition effect against the growth of silage-spoiling microorganisms, including fungi, yeast, and clostridia. The results suggest that these strains are good candidates for silage additives. However, the rye extract media where the lactic acid bacteria had been cultured had no effect on or stimulated the growth of the silage-spoiling microorganisms, and the causes must be established for the practical use of the lactic acid bacteria as silage additives.

전국에서 채취한 사일리지 및 우분 시료로부터 사일리지 첨가제로 사용하기 위한 유산균을 순수 분리하고 그 특성을 조사하였다. MRS 배지에서 성장 속도를 기반으로 16개의 유산균 균주를 순수 분리하였으며 이들은 16S rRNA, RNA polymerase alpha subunit, 60-kDa heat shock protein, phenylalanyl-tRNA synthase alpha subunit 유전자 염기서열에 기반하여 Lactobacillus, Enterococcus, Weissella 속으로 동정되었다. 16균주 중 L. plantarum과 유전적으로 높은 유사도를 보인 균주들은 MRS 배지와 쌀보리 추출배지에서 가장 빠른 성장 및 pH 저하를 나타냈으며 이용 가능한 당 종류 및 생장 가능한 pH, 온도, 염분범위가 상대적으로 넓었다. 또한 이 균주들은 PCR 검사 결과 바이오제닉 아민 생성을 위한 유전자가 없었으며 그 MRS 배지 배양액은 사일리지 부패균에 대한 저해 효과가 상대적으로 큰 것으로 나타나 이 균주들이 우수한 사일리지 첨가제로 사용될 수 있을 것으로 판단된다. 그러나 분리된 모든 유산균들의 쌀보리 추출배지 배양액은 사일리지 부패균의 성장에 큰 영향을 미치지 않거나 오히려 촉진시켰으며 선발된 유산균들을 사일리지 제조에 사용하기 위하여 그 원인 구명과 대책마련이 필요할 것으로 판단된다.

Keywords

References

  1. Addah, W., Baah, J., Okine, E.K., and McAllister, T.A. 2012. A third-generation esterase inoculant alters fermentation pattern and improves aerobic stability of barley silage and the efficiency of body weight gain of growing feedlot cattle1. J. Anim. Sci. 90, 1541-1552. https://doi.org/10.2527/jas.2011-4085
  2. Avonts, L., Uytven, E.V., and Vuyst, L.D. 2004. Cell growth and bacteriocin production of probiotic Lactobacillus strains in different media. Int. Dairy J. 14, 947-955. https://doi.org/10.1016/j.idairyj.2004.04.003
  3. Blaiotta, G., Fusco, V., Ercolini, D., Aponte, M., Pepe, O., and Villani, F. 2008. Lactobacillus strain diversity based on partial hsp60 gene sequences and design of PCR-restriction fragment length polymorphism assays for species identification and differentiation. Appl. Environ. Microbiol. 74, 208-215. https://doi.org/10.1128/AEM.01711-07
  4. Cai, Y., Benno, Y., Ogawa, M., and Kumai, S. 1999. Effect of applying lactic acid bacteria isolated from forage crops on fermentation characteristics and aerobic deterioration of silage. J Dairy Sci. 82, 520-526. https://doi.org/10.3168/jds.S0022-0302(99)75263-X
  5. Cheli, F., Campagnoli, A., and Dell'Orto, V. 2013. Fungal populations and mycotoxins in silages: From occurrence to analysis. Anim. Feed Sci. Tech. 183, 1-16. https://doi.org/10.1016/j.anifeedsci.2013.01.013
  6. Cho, T.Y., Han, G.H., Bahn, K.N., Son, Y.W., Jang, M.R., Lee, C.H., Kim, S.H., Kim, D.B., and Kim, S.B. 2006. Evaluation of biogenic amines in Korean commercial fermented foods. Korea J. Food Sci. Technol. 38, 730-737.
  7. Dave, R.I. and Shah, N.P. 1997. Characteristics of bacteriocin produced by Lactobacillus acidophilus LA-1. Int. Dairy J. 7, 707-715. https://doi.org/10.1016/S0958-6946(97)00095-2
  8. Duniere, L., Sindou, J., Chaucheyras-Durand, F., Chevallier, I., and Thevenot-Sergentet, D. 2013. Silage processing and strategies to prevent persistence of undesirable microorganisms. Anim. Feed Sci. Tech. 182, 1-15. https://doi.org/10.1016/j.anifeedsci.2013.04.006
  9. Fadhlaoui-Zid, K., Curiel, J.A., Landeta, G., Fattouch, S., Reveron, I., de las Rivas, B., Sadok, S., and Munoz, R. 2012. Biogenic amine production by bacteria isolated from ice-preserved sardine and mackerel. Food Control. 25, 89-95. https://doi.org/10.1016/j.foodcont.2011.10.032
  10. Falguni, P., Shilpa, V.I.J., and Mann, B. 2010. Production of proteinaceous antifungal substances from Lactobacillus brevis NCDC 02. Int. J. Dairy Technol. 63, 70-76. https://doi.org/10.1111/j.1471-0307.2009.00553.x
  11. Filya, I. 2003. The Effect of Lactobacillus buchneri and Lactobacillus plantarum on the fermentation, aerobic stability, and ruminal degradability of low dry matter corn and sorghum silages. J. Dairy Sci. 86, 3575-3581. https://doi.org/10.3168/jds.S0022-0302(03)73963-0
  12. Gevers, D., Huys, G., and Swings, J. 2001. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol. Lett. 205, 31-36. https://doi.org/10.1111/j.1574-6968.2001.tb10921.x
  13. Hammes, W.P. and Hertel, C. 2009. Genus I. Lactobacillus, pp. 465-511. In De Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.H., and Whitman, W.B. (eds.), Bergey's manual of systematic bacteriology, vol. 3: the, The Firmicutes, Springer, New York, USA.
  14. Jeong, J.Y., Lim, Y.T., and Seok, H.B. 2000. Studies on the characteristics of Lactobacillus plantarum isolated from oat silage. Korean J. Vet. Res. 40, 325-332.
  15. Jin, L., Duniere, L., Lynch, J.P., McAllister, T.A., Baah, J., and Wang, Y. 2015. Impact of ferulic acid esterase producing lactobacilli and fibrolytic enzymes on conservation characteristics, aerobic stability and fiber degradability of barley silage. Anim. Feed Sci. Tech. 207, 62-74. https://doi.org/10.1016/j.anifeedsci.2015.06.011
  16. Kang, T.W., Adesogan, A.T., Kim, S.C., and Lee, S.S. 2009. Effects of an esterase-producing inoculant on fermentation, aerobic stability, and neutral detergent fiber digestibility of corn silage. J. Dairy Sci. 92, 732-738. https://doi.org/10.3168/jds.2007-0780
  17. Kim, J.G., Ham, J.S., Chung, E.S., Park, H.S., Lee, J.K., Jung, M.W., Choi, K.C., Jo, N.C., and Seo, S. 2009. Evaluation of fermentation ability of microbes for whole crop barley silage inoculant. J. Korean Grassl. Forage Sci. 29, 235-244. https://doi.org/10.5333/KGFS.2009.29.3.235
  18. Kim, J.G., Ham, J.S., Chung, E.S., Seo, S., and Park, H.S. 2010. Evaluation of fermentation ability of microbes for corn silage incoulant. J. Korean Grassl. Forage Sci. 30, 333-342. https://doi.org/10.5333/KGFS.2010.30.4.333
  19. Kim, J.G., Ham, J.S., Chung, E.S., Yoon, S.H., Kim, M.J., Park, H.S., Lim, Y.C., and Seo, S. 2008. Evaluation of fermentation ability of microbes for whole crop rice silage incoulant. J. Korean Grassl. Forage Sci. 28, 229-236. https://doi.org/10.5333/KGFS.2008.28.3.229
  20. Kleinschmit, D.H. and Kung Jr, L. 2006. A meta-analysis of the effects of Lactobacillus buchneri on the fermentation and aerobic stability of corn and grass and small-grain silages. J. Dairy Sci. 89, 4005-4013. https://doi.org/10.3168/jds.S0022-0302(06)72444-4
  21. Liu, S., Bischoff, K.M., Anderson, A.M., and Rich, J.O. 2016. Novel feruloyl esterase from Lactobacillus fermentum NRRL B-1932 and analysis of the recombinant enzyme produced in Escherichia coli. Appl. Environ. Microbiol. 82, 5068-5076. https://doi.org/10.1128/AEM.01029-16
  22. MAFRA. 2016. A news release: A public demonstration of roughage harvest in Saemangeum and a creation of a boom in the production and utilization of roughage. Ministry of Agriculture, Food, and Rural Affairs.
  23. Magnusson, J. and Schnurer, J. 2001. Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Appl. Environ. Microbiol. 67, 1-5. https://doi.org/10.1128/AEM.67.1.1-5.2001
  24. Magnusson, J., Strom, K., Roos, S., Sjogren, J., and Schnurer, J. 2003. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol. Lett. 219, 129-135. https://doi.org/10.1016/S0378-1097(02)01207-7
  25. Marcinakova, M., Laukova, A., Simonova, M., Strompfova, V., Korenekova, B., and Nad, P. 2008. A new probiotic and bacteriocin-producing strain of Enterococcus faecium EF9296 and its use in grass ensiling. Czech J. Anim. Sci. 53, 336-345.
  26. Miyamoto, M., Seto, Y., Hai Hao, D., Teshima, T., Bo Sun, Y., Kabuki, T., Bing Yao, L., and Nakajima, H. 2005. Lactobacillus harbinensis sp. nov., consisted of strains isolated from traditional fermented vegetables 'Suan cai' in Harbin, Northeastern China and Lactobacillus perolens DSM 12745. Syst. Appl. Microbiol. 28, 688-694. https://doi.org/10.1016/j.syapm.2005.04.001
  27. Saarisalo, E., Skytta, E., Haikara, A., Jalava, T., and Jaakkola, S. 2007a. Screening and selection of lactic acid bacteria strains suitable for ensiling grass. J. Appl. Microbiol. 102, 327-336.
  28. Saarisalo, E., Skytta, E., Haikara, A., Jalava, T., and Jaakkola, S. 2007b. Screening and selection of lactic acid bacteria strains suitable for ensiling grass. J. Appl. Microbiol. 102, 327-336.
  29. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  30. Todorov, S.D. 2008. Bacteriocin production by Lactobacillus plantarum AMA-K isolated from Amasi, a Zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K to Listeria sp. Braz. J. Microbiol. 39, 178-187. https://doi.org/10.1590/S1517-83822008000100035
  31. Tohno, M., Kobayashi, H., Nomura, M., Kitahara, M., Ohkuma, M., Uegaki, R., and Cai, Y. 2012. Genotypic and phenotypic characterization of lactic acid bacteria isolated from Italian ryegrass silage. Anim. Sci. J. 83, 111-120. https://doi.org/10.1111/j.1740-0929.2011.00923.x
  32. Valan Arasu, M., Jung, M.W., Ilavenil, S., Kim, D.H., Park, H.S., Park, J.W., Al-Dhabi, N.A., and Choi, K.C. 2014. Characterization, phylogenetic affiliation and probiotic properties of high cell density Lactobacillus strains recovered from silage. J. Sci. Food Agr. 94, 2429-2440. https://doi.org/10.1002/jsfa.6573
  33. Weinberg, Z.G. and Muck, R.E. 1996. New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiol. Rev. 19, 53-68.
  34. Wilkinson, J.M. and Davies, D.R. 2013. The aerobic stability of silage: key findings and recent developments. Grass Forage Sci. 68, 1-19. https://doi.org/10.1111/j.1365-2494.2012.00891.x
  35. Zou, Y., Liu, F., Fang, C., Wan, D., Yang, R., Su, Q., Yang, R., and Zhao, J. 2013. Lactobacillus shenzhenensis sp. nov., isolated from a fermented dairy beverage. Int. J. Syst. Evol. Microbiol. 63, 1817-1823. https://doi.org/10.1099/ijs.0.041111-0

Cited by

  1. Diversity Census of Fungi in the Ruminal Microbiome: A meta-analysis vol.18, pp.12, 2017, https://doi.org/10.5762/kais.2017.18.12.466
  2. Effect of temperature on single- and mixed-strain fermentation of ruminant feeds vol.62, pp.2, 2020, https://doi.org/10.5187/jast.2020.62.2.227
  3. Isolation and Characterization of Rhodococcus sp. Strains Capable of Degrading Benzimidazole Fungicides Benomyl and Carbendazim vol.24, pp.2, 2016, https://doi.org/10.7585/kjps.2020.24.2.163