DOI QR코드

DOI QR Code

Antifungal activity of Streptomyces costaricanus HR391 against some plant-pathogenic fungi

여러 식물병원성 진균을 억제하는 Streptomyces costaricanus HR391의 항진균능

  • Kim, Hae-Ryoung (Department of Biological Sciences, Kangwon National University) ;
  • Song, Hong-Gyu (Department of Biological Sciences, Kangwon National University)
  • Received : 2016.09.19
  • Accepted : 2016.11.16
  • Published : 2016.12.31

Abstract

In this study Streptomyces strains were isolated from soils and their antifungal activities and involved mechanisms were investigated. Among over 400 isolates of actinomycetes, Streptomyces costaricanus HR391 was selected as a potential antagonist to control several plant-pathogenic fungi. S. costaricanus HR391 inhibited mycelial growth of Fusarium oxysporum f. sp. raphani, F. oxysporum f. sp. niveum, F. oxysporum f. sp. lycopersici, and Rhizoctonia solani by 26.5, 26.2, 21.2, and 23.8%, respectively compared to those of uninoculated control after 7-day incubation on PDB medium. S. costaricanus HR391 produced $89{\mu}M$ of siderphore, and showed fungal cell wall-degrading activity including $0.46{\mu}mol/min/mg$ of chitinase and $0.83{\mu}mol/min/mg$ of ${\beta}$-1,3 glucanase. S. costaricanus HR391 secreted 87.49 mg/L of rhamnolipid, and produced 9.49 mg/L and 4.3 mM of lipopeptide, iturin A and surfactin, respectively, all they are membrane-disrupting biosurfactants. It also produced antimicrobial peptide and antibiotics phenazine. In addition to antifungal substances, S. costaricanus HR391 secreted plant growth-promoting phytohormones, zeatin, gibberellins and IAA. These results suggest that S. costaricanus HR391 may be utilized as an environment-friendly biocontrol agent against some important pathogenic fungi.

여러 토양에서 분리한 400여 개의 방선균 균주에 대해 4가지 식물병원성 진균에 대한 항진균 활성을 조사하였으며 그 중 Streptomyces costaricanus HR391 균주는 PDB 배지에서 식물병원성 진균인 Fusarium oxysporum f. sp. raphani, F. oxysporum f. sp. niveum, F. oxysporum f. sp. lycopersici와 Rhizoctonia solani의 균사 생장을대조군과 비교하여 각각 26.5, 26.2, 21.2와 23.8% 저해하였다. S. costaricanus HR391은 항진균물질인 siderophore를 $98{\mu}M$을 생성할 뿐만 아니라 유화활성을 나타내며 막지질을 파괴할 수 있는 생물계면활성제인 rhamnolipid와 lipopeptide인 iturin A와 surfactin를 생성하였다. 또한 진균 세포막을 분해할 수 있는 chitinase와 glucanase 활성도 나타내었으며 병원균의 막을 파괴하는 AMP와 항생물질 phenazine도 분비하였다. 이외에도 식물생장 촉진활성을 갖는 zeatin, gibberellin과 indole acetic acid 같은 식물호르몬도 생성하였다. 이와 같이 항진균 활성을 나타내는 S. costaricanus HR391 균주는 다양한 종류의 항진균 물질의 상승작용과 더불어 높은 생물계면활성이 본 균주의 항진균 활성에 큰 역할을 하는 것으로 보이며 친환경적인 생물학적 항진균제로서 활용이 가능할 것으로 기대된다.

Keywords

References

  1. Abdallah, R., Mokni-Tlili, S., Nefzi, A., Jabnoun-Khiareddine, H., and Daami-Remadi, M. 2016. Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol. Control 97, 80-88. https://doi.org/10.1016/j.biocontrol.2016.03.005
  2. Afsharmanesh, H., Ahmadzadeh, M., Javan-Nikkhah, M., and Behboudi, K. 2014. Improvement in biocontrol activity of Bacillus subtilis UTB1 against Aspergillus flavus using gamma-irradiation. Crop Prot. 60, 83-92. https://doi.org/10.1016/j.cropro.2014.02.013
  3. Aftab, U. and Sajid, I. 2016. Antitumor peptides from Streptomyces sp. SSA 13, isolated from Arabian Sea. Int. J. Pept. Res. Ther. In Press. doi:10.107/s10989-016-9552-6.
  4. Aldesuquy, H., Mansour, F., and Abo-Hamed, S. 1998. Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol. 43, 465-470. https://doi.org/10.1007/BF02820792
  5. Arunachalam, S., Yang, S., Zhang, L., and Suh, J. 2013, Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 97, 9621-9636. https://doi.org/10.1007/s00253-013-5206-1
  6. Berendsen, R., Pieterse, C., and Bakker, P. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478-486. https://doi.org/10.1016/j.tplants.2012.04.001
  7. Boukaew, S. and Prasertsan, P. 2014. Suppression of rice sheath blight disease using a heat stable culture filtrate from Streptomyces philanthi RM-1-138. Crop Prot. 61, 1-10.
  8. Chen, Y., Shen, X., Peng, H., Hu, H., Wang, W., and Zhang, X. 2015. Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium. Genomics Data 4, 33-42. https://doi.org/10.1016/j.gdata.2015.01.006
  9. Faheem, M., Raza, W., Zhong, W., Nan, Z., Shen, Q., and Xu, Y. 2015. Evaluation of the biocontrol potential of Streptomyces goshikiensis YCXU against Fusarium oxysporum f. sp. niveum. Biol. Control 81, 101-110. https://doi.org/10.1016/j.biocontrol.2014.11.012
  10. Ghosh, R., Barman, S., Mukhopadhyay, A., and Mandal, N. 2015. Biological control of jackfruit by rhizobacteria and food grade lactic acid bacteria. Biol. Control 83, 29-36. https://doi.org/10.1016/j.biocontrol.2014.12.020
  11. Gopalakrishnan, S., Pande, S., Sharma, M., Humayun, P., Kiran, B., Sandeep, D., and Rupela, O. 2011. Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot. 30, 1070-1078. https://doi.org/10.1016/j.cropro.2011.03.006
  12. Guo, S., Chen, J., and Lee, W. 2004. Purification and characterization of extracellular chitinase from Aeromonas schubertii. Enzyme Microb. Technol. 35, 550-556. https://doi.org/10.1016/j.enzmictec.2004.08.025
  13. Gupta, R. and Srivastava, S. 2014. Antifungal effect of antimicrobial peptides (AMPs LR14) derived from Lactobacillus plantarum strain LR/14 and their applications in prevention of grain spoilage. Food Microbiol. 42, 1-7. https://doi.org/10.1016/j.fm.2014.02.005
  14. Han, Y., Li, Z., Miao, X., and Zhang, F. 2008. Statistical optimization of medium components to improve the chitinase activity of Streptomyces sp. Da11 associated with the South China Sea sponge Craniella australiensis. Process Biochem. 43, 1088-1093. https://doi.org/10.1016/j.procbio.2008.05.014
  15. Kalbe, C., Marten, P., and Berg, G. 1996. Strains of the genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties. Microbiol. Res. 151, 433-439. https://doi.org/10.1016/S0944-5013(96)80014-0
  16. Kalyani, A., Girija, S., and Prabhakar, T. 2014. Optimization of rhamnolipid biosurfactant production by Streptomyces matensis (NBRC 12889$^T$) using Plackett-Burman design. J. Biomed. Pharmac. Res. 3, 1-7.
  17. Kamensky, M., Ovadis, M., Chet, I., and Chernin, L. 2003. Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol. Biochem. 35, 323-331. https://doi.org/10.1016/S0038-0717(02)00283-3
  18. Karadeniz, A., Topcuoglu, S., and Inan, S. 2006. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J. Microbiol. Biotechnol. 22, 1061-1064. https://doi.org/10.1007/s11274-005-4561-1
  19. Khopade, A., Biao, R., Liu, X., Mahadik, K., Zhang, L., and Kokare, C. 2012. Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination 285, 198-204. https://doi.org/10.1016/j.desal.2011.10.002
  20. Laursen, J. and Nielsen, J. 2004. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem. Rev. 104, 1663-1686. https://doi.org/10.1021/cr020473j
  21. Loqman, S., Barka, E., Clement, C., and Ouhdouch, Y. 2009. Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold. World J. Microbiol. Biotechnol. 25, 81-91. https://doi.org/10.1007/s11274-008-9864-6
  22. Maget-Dana, R., Thimon, L., Peypoux, F., and Ptak, M. 1992. Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74, 1047-1051. https://doi.org/10.1016/0300-9084(92)90002-V
  23. Mellouli, L., Ameur-Mehdi, R., Sioud, S., Salem, M., and Bejar, S. 2003. Isolation, purification and partial characterization of antibacterial activities produced by a newly isolated Streptomyces sp. US24 strain. Res. Microbiol. 154, 345-352. https://doi.org/10.1016/S0923-2508(03)00077-9
  24. Nagarajkumar, M., Bhaskaran, R., and Velazhahan, R. 2004. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol. Res. 159, 73-81. https://doi.org/10.1016/j.micres.2004.01.005
  25. Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153, 375-380.
  26. Palaniyandi, S., Yang, S., Zhang, L., and Suh, J. 2013. Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 97, 9621-9636. https://doi.org/10.1007/s00253-013-5206-1
  27. Park, J., Kim, J., Park, Y., and Kim, S. 2012. Purification and characterization of a 1,3-${\beta}$-D-glucanase from Streptomyces torulosus PCPOK-0324. Carbohydr. Polym. 87, 1641-1648. https://doi.org/10.1016/j.carbpol.2011.09.058
  28. Patil, N., Waghmare, S., and Jadhav, J. 2013. Purification and characterization of an extracellular antifungal chitinase from Penicillium ochrochloron MTCC 517 and its application in protoplast formation. Process Biochem. 48, 176-183. https://doi.org/10.1016/j.procbio.2012.11.017
  29. Reddy, K., Yedery, R., and Aranha, C. 2004. Antimicrobial peptides: premises and promises. Int. J. Antimicrob. Agents 24, 536-647. https://doi.org/10.1016/j.ijantimicag.2004.09.005
  30. Roberts, D., Lohrke, S., Meyer, S., Buyer, J., Bowers, J., Jacyn Baker, C., and Chung, S. 2005. Biocontrol agents applied individually and in combination for suppression of soil borne diseases of cucumber. Crop Prot. 24, 141-155. https://doi.org/10.1016/j.cropro.2004.07.004
  31. Rodrigues, L., Teixeira, J., van der Mei, H., and Oliveira, R. 2006. Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf. B 49, 79-86. https://doi.org/10.1016/j.colsurfb.2006.03.003
  32. Shirling, J. and Gottlieb, D. 1966, Methods for characterization of Streptomyces species. Int. J. Syst. Evol. Microbiol. 16, 313-340.
  33. Wang, Y., Lu, Z., Bie, X., and Lv, F. 2010. Separation and extraction of antimicrobial lipopeptides produced by Bacillus amyloliquefaciens ES-2 with macroporous resin. Eur. Food Res. Technol. 231, 189-196. https://doi.org/10.1007/s00217-010-1271-1
  34. Xu, D., Wang, Y., Sun, L., Liu, H., and Li, J. 2013. Inhibitory activity of a novel antibacterial peptide AMPNT-6 from Bacillus subtilis against Vibrio parahaemolyticus in shrimp. Food Control 30, 58-61. https://doi.org/10.1016/j.foodcont.2012.07.025

Cited by

  1. Biocontrol of Soil-Borne Pathogens of Solanum lycopersicum L. and Daucus carota L. by Plant Growth-Promoting Actinomycetes: In Vitro and In Planta Antagonistic Activity vol.10, pp.10, 2021, https://doi.org/10.3390/pathogens10101305