DOI QR코드

DOI QR Code

Variation of OC and EC in PM2.5 at Mt. Taehwa

태화산 PM2.5 OC와 EC의 변화 특성

  • Ham, Jeeyoung (Department of Earth and Environmental Sciences, Korea University) ;
  • Lee, Meehye (Department of Earth and Environmental Sciences, Korea University) ;
  • Kim, Hyun Seok (Department of Forest Sciences, Seoul National University) ;
  • Park, Hyunju (National Institute of Environmental Research, Air Quality Research Division) ;
  • Cho, Gangnam (National Institute of Environmental Research, Air Quality Research Division) ;
  • Park, Jungmin (National Institute of Environmental Research, Air Quality Research Division)
  • 함지영 (고려대학교 지구환경과학과) ;
  • 이미혜 (고려대학교 지구환경과학과) ;
  • 김현석 (서울대학교 농업생명대학교 산림과학부 산림환경학전공) ;
  • 박현주 (국립환경과학원 대기환경연구과) ;
  • 조강남 (국립환경과학원 대기환경연구과) ;
  • 박정민 (국립환경과학원 대기환경연구과)
  • Received : 2015.09.09
  • Accepted : 2015.12.15
  • Published : 2016.02.29

Abstract

Organic carbon (OC) and elemental carbon (EC) in $PM_{2.5}$ were measured with Sunset OC/EC Field Analyzer at Taehwa Research Forest (TRF) near Seoul metropolitan area from May 2013 to April 2014. During the study period, the mean concentrations of OC and EC were $5.0{\pm}3.2{\mu}gC/m^3$ and $1.7{\pm}1.0{\mu}gC/m^3$, respectively. They showed clear seasonality reaching their maximum in winter ($6.5{\mu}gC/m^3$ and $1.9{\mu}gC/m^3$) and minimum in wet summer ($2.5{\mu}gC/m^3$ and $1.4{\mu}gC/m^3$). While OC showed greater seasonal variation, the diurnal variation was more noticeable for EC through all seasons with a clear maximum in the morning, which reveals the influence of vehicle emissions. In contrast, OC exhibited a broad second peak in the afternoon during May~June, when biological activities were the highest. Using the morning peaks of EC and OC, primary OC/EC ratio was assessed, which was assumed to be anthropogenic origin. It was the greatest in winter followed by spring and the lowest in wet summer. The seasonal difference in primary OC/EC ratio implies the influence of non-local sources of OC at the Mt. Taehwa.

Keywords

References

  1. Agarwal, S., S.G. Aggarwal, K. Okuzawa, and K. Kawamura (2010) Size distributions of dicarboxylic acids, ketoacids, ${\alpha}$-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols, Atmos. Chem. Phys., 10(13), 5839-5858. https://doi.org/10.5194/acp-10-5839-2010
  2. Anderson, J.O., J.G. Thundiyil, and A. Stolbach (2012) Clearing the air: a review of the effects of particulate matter air pollution on human health, Journal of Medical Toxicology, 8(2), 166-175. https://doi.org/10.1007/s13181-011-0203-1
  3. Andreae, M.O. and P.J. Crutzen (1997) Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry, Science, 276(5315), 1052-1058. https://doi.org/10.1126/science.276.5315.1052
  4. Atkinson, R. (2000) Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34(12-14), 2063-2101. https://doi.org/10.1016/S1352-2310(99)00460-4
  5. Bates, T.S., P.K. Quinn, D.J. Coffman, J.E. Johnson, and A.M. Middlebrook (2005) Dominance of organic aerosols in the marine boundary layer over the Gulf of Maine during NEAQS 2002 and their role in aerosol light scattering, J. Geophys. Res., 110 (D18), doi:10.1029/2005JD005797.
  6. Bond, T.C., S.J. Doherty, D.W. Fahey, P.M. Forster, T. Berntsen, B.J. DeAngelo, M.G. Flanner, S. Ghan, B. Kaercher, D. Koch, S. Kinne, Y. Kondo, P.K. Quinn, M.C. Sarofim, M.G. Schultz, M. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S.K. Guttikunda, P.K. Hopke, M.Z. Jacobson, J.W. Kaiser, Z. Klimont, U. Lohmann, J.P. Schwarz, D. Shindell, T. Storelvmo, S.G. Warren, and C.S. Zender (2013) Bounding the role of black carbon in the climate system: a scientific assessment, J. Geophys. Res., 118(11), 5380-5552.
  7. Chou, C.C.-K., C.T. Lee, M.T. Cheng, C.S. Yuan, S.J. Chen, Y.L. Wu, W.C. Hsu, S.C. Lung, S.C. Hsu, C.Y. Lin, and S.C. Liu (2010) Seasonal variation and spatial distribution of carbonaceous aerosols in Taiwan, Atmos. Chem. Phys., 10(19), 9563-9578. https://doi.org/10.5194/acp-10-9563-2010
  8. Chow, J.C., J.G. Watson, D.H. Lowenthal, L.-W.A. Chen, and N. Motallebi (2010) Black and organic carbon emission inventories: review an application to California, J. Air Waste Manage. Assoc., 60(4), 497-507. https://doi.org/10.3155/1047-3289.60.4.497
  9. Chow, J.C., J.G. Watson, P. Doraiswamy, L.-W.A. Chen, D.A. Sodeman, D.H. Lowenthal, K. Park, W.P. Arnott, and N. Motallebi (2009) Aerosol light absorption, black carbon, and elemental carbon at the Fresno Supersite, California, Atmos. Res., 93(4), 874-887. https://doi.org/10.1016/j.atmosres.2009.04.010
  10. Duan, J., J. Tan, D. Cheng, and X. Bi (2007) Sources and characteristics of carbonaceous aerosol in two largest cities in Pearl River Delta Region, China, Atmos. Environ., 41(14), 2895-2903. https://doi.org/10.1016/j.atmosenv.2006.12.017
  11. Elbert, W., P.E. Taylor, M.O. Andreae, and U. Poschl (2007) Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions, Atmos. Chem. Phys., 7(17), 4569-4588. https://doi.org/10.5194/acp-7-4569-2007
  12. Feng, Y., Y. Chen, H. Guo, G. Zhi, S. Xiong, J. Li, G. Sheng, and J. Fu (2009) Characteristics of organic and elemental carbon in $PM_{2.5}$ samples in Shanghai, China, Atmos. Res., 92(4), 434-442. https://doi.org/10.1016/j.atmosres.2009.01.003
  13. Gentner, D.R., G. Isaacman, D.R. Worton, A.W.H. Chan, T.R. Dallmann, L. Davis, S. Liu, D.A. Day, L.M. Russell, K.R. Wilson, R. Weber, A. Guha, R.A. Harley, and A.H. Goldstein (2012) Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions, Proc. Natl. Acad. Sci. U.S.A., 109(45), 18318-18323. https://doi.org/10.1073/pnas.1212272109
  14. Ham, J.Y. (2015) Continuous measurement of $PM_{2.5}$ organic carbon (OC) at Mt. Teahwa: Temporal variation and estimation of source, Korea University, Master's thesis.
  15. Han, J., B. Bahng, M. Lee, S. Yoon, S. Kim, L. Chang, and K. Kang (2013) Semi-continuous Measurements of $PM_{2.5}$ OC and EC at Gosan: Seasonal Variations and Characteristics of High-concentration Episodes, J. Korean Soc. Atmos. Environ., 29(3), 237-250. (in Korean with English Abstract) https://doi.org/10.5572/KOSAE.2013.29.3.237
  16. Hopke, P. (2009) Contemporary threats and air pollution, Atmos. Environ., 43(1), 87-93. https://doi.org/10.1016/j.atmosenv.2008.09.053
  17. Janssen, N.A., G. Hoek, M. Simic-Lawson, P. Fischer, L. van Bree, H. ten Brink, M. Keuken, R.W. Atkinson, H.R. Anderson, B. Brunekreef, and F.R. Cassee (2011) Black carbon as an additional indicator of the adverse health effects of airborne particles compared with $PM_{10}$ and $PM_{2.5}$, Environ. Health Perspect, 119(12), 1691-1699. https://doi.org/10.1289/ehp.1003369
  18. Jung, J., S. Kim, B. Choi, and K. Kim (2009) A Study on the Characteristics of Carbonaceous Compounds in $PM_{2.5}$ Measured in Chuncheon and Seoul, J. Korean Soc. Atmos. Environ., 25(2), 141-153. (in Korean with English Abstract) https://doi.org/10.5572/KOSAE.2009.25.2.141
  19. KFRI (2010) Information report.
  20. Kim, H.-S., J.-B. Huh, P.K. Hopke, T.M. Holsen, and S.-M. Yi (2007) Characteristics of the major chemical constituents of $PM_{2.5}$ and smog events in Seoul, Korea in 2003 and 2004, Atmos. Environ., 41(32), 6762-6770. https://doi.org/10.1016/j.atmosenv.2007.04.060
  21. Kim, H., M. Lee, S. Kim, A. Guenther, J. Park, G. Cho, and H. Kim (2015a) Measurements of Isoprene and Monoterpenes at Mt. Taehwa and Estimation of Their Emissions, Korean Journal of Agricultural and Forest Meteorology, 17(3), 217-226. (in Korean with English abstract)
  22. Kim, S., M. Lee, S. Kim, S. Choi, S. Seok, and S. Kim (2013a) Photochemical Characteristics of High and Low ozone episodes observed in the Taehwa Forest Observatory (TFO) in June 2011 near Seoul South Korea, Asia-Pacific J. Atmos. Sciences, 49(3), 325-331. https://doi.org/10.1007/s13143-013-0031-0
  23. Kim, S.-Y., X. Jiang, M. Lee, A. Turnipseed, A. Guenther, J.-C. Kim, S.-J. Lee, and S. Kim (2013b) Impact of biogenic volatile organic compounds on ozone production at the Taehwa Research Forest near Seoul, South Korea, Atmos. Environ., 70, 447-453. https://doi.org/10.1016/j.atmosenv.2012.11.005
  24. Kim, S., S.-Y. Kim, M. Lee, H. Shim, G. Wolfe, A. Guenther, A. He, H. Hong, and J. Han (2015b) Impact of isoprene and HONO chemistry on ozone and OVOC formation in a semirural South Korean forest, Atmos. Chem. Phys., 15(8), 4357-4371. https://doi.org/10.5194/acp-15-4357-2015
  25. KMA (2013-2014) Monthly weather report.
  26. KMOE (2013) Air environmental conservation act.
  27. Kroll, J.H. and J.H. Seinfeld (2008) Chemistry of secondary organic aerosol: formation and evolution of low volatility organics in the atmosphere, Atmos. Environ., 42(16), 3593-3624. https://doi.org/10.1016/j.atmosenv.2008.01.003
  28. Li, G., R. Zhang, J. Fan, and X. Tie (2005) Impacts of black carbon aerosol on photolysis and ozone, J. Geophys. Res., 110 (D23206), doi:10.1029/2005JD005898.
  29. MOLIT (2014) Information report.
  30. Na, K., C. Song, C. Switzer, and D.R. Cocker III (2007) Effect of ammonia on secondary organic aerosol formation from ${\alpha}$-pinene ozonolysis in dry and humid conditions, Environ. Sci. Technol., 41(17), 6096-6102. https://doi.org/10.1021/es061956y
  31. NIOSH, A. (1996) Method 5040 issue 1: Elemental carbon (Diesel Exhaust), NIOSH Manual of Analytical Methods, fourth ed. National Institute of Occupational Safety and Health, Cincinnati, OH.
  32. Park, S.S., Y.J. Kim, and K. Fung (2001) Characteristics of $PM_{2.5}$ carbonaceous aerosol in the Sihwa industrial area, South Korea, Atmos. Environ., 35(4), 657-665. https://doi.org/10.1016/S1352-2310(00)00357-5
  33. Park, S.S., Y.J. Kim, and K. Fung (2002) $PM_{2.5}$ carbon measurements in two urban areas: Seoul and Kwangju, Korea, Atmos. Environ., 36(8), 1287-1292. https://doi.org/10.1016/S1352-2310(01)00552-0
  34. Park, S.S., D. Harrison, P. Pancras, and J.M. Ondov (2005) Time resolved elemental and organic carbon measurements at the Baltimore Supersite in 2002, J. Geophys. Res., 110 (D07S06), doi:10.1029/2004JD004610.
  35. Park, S.S., S.A. Jung, B.J. Gong, S.Y. Cho, and S.J. Lee (2013) Characteristics of $PM_{2.5}$ haze episodes revealed by highly time-resolved measurements at an air pollution monitoring Supersite in Korea, Aerosol and Air Quality Res., 13, 957-976.
  36. Rattigan, O., H. Felton, M. Bae, J. Schwab, and K. Demerjian (2010) Multi-year hourly $PM_{2.5}$ carbon measurements in New York: Diurnal, day of week and seasonal patterns, Atmos. Environ., 44(16), 2043-2053. https://doi.org/10.1016/j.atmosenv.2010.01.019
  37. Robinson, A.L., N.M. Donahue, M.K. Shrivastava, E.A. Weitkamp, A.M. Sage, A.P. Grieshop, T.E. Lane, J.R. Pierce, and S.N. Pandis (2007) Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging, Science, 315(5816), 1259-1262. https://doi.org/10.1126/science.1133061
  38. Samara, C., D. Voutsa, A. Kouras, K. Eleftheriadis, T. Maggos, D. Saraga, and M. Petrakakis (2014) Organic and elemental carbon associated to $PM_{10}$ and $PM_{2.5}$ at urban sites of northern Greece, Environ. Sci. Pollut. Res., 21(3), 1769-1785. https://doi.org/10.1007/s11356-013-2052-8
  39. Sandrini, S., S. Fuzzi, A. Piazzalunga, P. Prati, P. Bonasoni, F. Cavalli, M.C. Bove, M. Calvello, D. Cappelletti, C. Colombi, D. Contini, Gianluigi de Gennaro, A.D. Gilio, P. Fermo, L. Ferrero, V. Gianelle, M. Giugliano, P. Ielpo, G. Lonati, A. Marinoni, D. Massabo, U. Molteni, B. Moroni, G. Pavese, C. Perrino, M.G. Perrone, M.R. Perrone, J.-P. Putaud, T. Sargolini, R. Vecchi, and S. Gilardoni (2014) Spatial and seasonal variability of carbonaceous aerosol across Italy, Atmos. Environ., 99, 587-598. https://doi.org/10.1016/j.atmosenv.2014.10.032
  40. Seinfeld, J.H. and S.N. Pandis (2012) Atmospheric chemistry and physics: from air pollution to climate change, John Wiley & Sons, USA, 628-690.
  41. Shilling, J.E., R.A. Zaveri, J.D. Fast, L. Kleinman, M.L. Alexander, M.R. Canagaratna, E. Fortner, J.M. Hubbe, J.T. Jayne, A. Sedlacek, A. Setyan, S. Springston, D.R. Worsnop, and Q. Zhang (2013) Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign, Atmos. Chem. Phys., 13(4), 2091-2113. https://doi.org/10.5194/acp-13-2091-2013
  42. Shim, C., J. Hong, J. Hong, Y. Kim, M. Kang, B.M. Thakuri, Y. Kim, and J. Chun (2014) Evaluation of MODIS GPP over a complex ecosystem in East Asia: A case study at Gwangneung flux tower in Korea, Advances in Space Res., 54(11), 2296-2308. https://doi.org/10.1016/j.asr.2014.08.031
  43. Szidat, S., M. Ruff, N. Perron, L. Wacker, H.A. Synal, M. Hallquist, A.S. Shannigrahi, K.E. Yttri, C. Dye, and D. Simpson (2009) Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in Goteborg, Sweden, Atmos. Chem. Phys., 9(5), 1521-1535. https://doi.org/10.5194/acp-9-1521-2009
  44. Turpin, B.J. and J.J. Huntzicker (1995) Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS, Atmos. Environ., 29(23), 3527-3544. https://doi.org/10.1016/1352-2310(94)00276-Q
  45. Turpin, B.J., P. Saxena, and E. Andrews (2000) Measuring and simulating particulate organics in the atmosphere: problems and prospects, Atmos. Environ., 34(18), 2983-3013. https://doi.org/10.1016/S1352-2310(99)00501-4
  46. Yin, J.X. and R.M. Harrison (2008) Pragmatic mass closure study for $PM_{10}$, $PM_{2.5}$ and $PM_{10}$ at roadside, urban background and rural sites, Atmos. Environ., 42(5), 980-988. https://doi.org/10.1016/j.atmosenv.2007.10.005
  47. Ying, Q., I.V. Cureno, G. Chen, S. Ali, H. Zhang, M. Malloy, H.A. Bravo, and R. Sosa (2014) Impacts of Stabilized Criegee Intermediates, surface uptake processes and higher aromatic secondary organic aerosol yields on predicted $PM_{2.5}$ concentrations in the Mexico City Metropolitan Zone, Atmos. Environ., 94, 438-447. https://doi.org/10.1016/j.atmosenv.2014.05.056
  48. Yu, X.Y., R.A. Cary, and N.S. Laulainen (2009) Primary and secondary organic carbon downwind of Mexico City, Atmos. Chem. Phys., 9(18), 6793-6814. https://doi.org/10.5194/acp-9-6793-2009

Cited by

  1. Characterization of Aerosol Composition, Concentration, and Sources in Bukhansan National Park, Korea vol.34, pp.3, 2018, https://doi.org/10.5572/KOSAE.2018.34.3.457