DOI QR코드

DOI QR Code

An Estimated Closeness Centrality Ranking Algorithm for Large-Scale Workflow Affiliation Networks

대규모 워크플로우 소속성 네트워크를 위한 근접 중심도 랭킹 알고리즘

  • Received : 2015.02.03
  • Accepted : 2015.10.14
  • Published : 2016.02.29

Abstract

A type of workflow affiliation network is one of the specialized social network types, which represents the associative relation between actors and activities. There are many methods on a workflow affiliation network measuring centralities such as degree centrality, closeness centrality, betweenness centrality, eigenvector centrality. In particular, we are interested in the closeness centrality measurements on a workflow affiliation network discovered from enterprise workflow models, and we know that the time complexity problem is raised according to increasing the size of the workflow affiliation network. This paper proposes an estimated ranking algorithm and analyzes the accuracy and average computation time of the proposed algorithm. As a result, we show that the accuracy improves 47.5%, 29.44% in the sizes of network and the rates of samples, respectively. Also the estimated ranking algorithm's average computation time improves more than 82.40%, comparison with the original algorithm, when the network size is 2400, sampling rate is 30%.

워크플로우 소속성 네트워크는 워크플로우 기반 조직의 수행자와 업무 사이의 연관관계를 나타내는 소셜 네트워크의 한 형태이며, 이를 기반으로 연결 중심도, 근접 중심도, 사이 중심도, 위세 중심도 등과 같은 다양한 분석 기법들이 제안되었다. 특히, 전사적 워크플로우 모델을 기반으로 하는 소속성 네트워크의 근접 중심도 분석은 워크플로우 소속성 네트워크의 규모가 증가함에 따라, 중심도 및 랭킹 계산의 시간 복잡도 문제점을 가진다는 것을 발견하였다. 본 논문에서는 근접 중심도 분석의 시간 복잡도 문제를 개선하기 위해, 근사치 추정 방법을 이용한 워크플로우 기반 소속성 네트워크의 추정 근접 중심도 기반 랭킹 알고리즘을 제안한다. 노드의 타입이 수행자인, 워크플로우 예제 모델을 추정 근접 중심도 기반 랭킹 알고리즘에 적용한 성능 분석을 실시하였다. 수행 결과, 네트워크 규모 관점에서의 정확도는 평균적으로 47.5% 향상되었고, 샘플 모집단 비율 관점에서는 평균적으로 9.44%정도의 향상된 수치를 보였다. 또한, 추정 근접 중심도 랭킹 알고리즘의 평균 계산 시간은 네트워크의 노드 수가 2400개, 샘플 모집단의 비율이 30%일 때, 기존 근접 중심도 랭킹 알고리즘의 평균 계산 시간보다 82.40%의 높은 성능을 보였다.

Keywords

References

  1. A. Battestseg, H. Ahn, Y. Lee, M. Park, H. Kim, W. Yoon, K. Kim, "Organizational Closeness Centrality Analysis on Workflow-supported Activity-Performer Affiliation Networks", Proceedings of the 15th International Conference on Advanced Communication Technology, pp. 154-157, 2013. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6488160
  2. H. Ahn, K. Kim, "An Activity-Performer Bipartite Matrix Generation Algorithm for Analyzing Workflow-supported Human-Resource Affiliations", Journal of Korean Society for Internet Information, Vol. 14, No. 2, pp. 25-34, 2013. http://dx.doi.org/10.7472/jksii.2013.14.2.25
  3. D. Knoke, S. Yang, SOCIAL NETWORK ANALYSIS- 2nd Edition, Series : Quantitative Applications in the Social Science, SAGE Publications, 2008.
  4. D. Lee, H. Ahn, H. Kim, K. Kim, "A Ranking Algorithm of Closeness Centralities for Large-Scale Workflowsupported Affiliation Networks", Korean Society for Internet Information, Vol. 15, No. 1, pp. 37-38. 2014.
  5. D. Lee, H. Ahn, H. Kim, K. Kim, "Accuracy Analysis of an Estimated Closeness Centrality based Ranking Algorithm in Large Scale Workflow-supported Affiliation Networks", Korean Society for Internet Information, Vol. 15, No. 2, pp. 171-172, 2014.
  6. A. Aini, A. Salehipour, "Speeding up the Floyd-Warshall algorithm for the cycled shortest path problem.", Applied Mathematics Letters Vol. 25, No. 1, pp. 1-5, 2012. http://dx.doi.org/10.1016/j.aml.2011.06.008
  7. H. Kim, H. Ahn, K. Kim, "A Workflow Affiliation Network Discovery Algorithm", ICIC Express Letters(SCOPUS), Vol. 6, No. 3, pp. 765-770, 2012.
  8. J. Song, M. Kim, H. Kim, K. Kim, "A Framework : Workflow-based Social Network Discovery and Analysis", Proceedings of the 13th International Conference on Computational Science and Engineering, pp. 421-426, 2010. http://dx.doi.org/10.1109/CSE.2010.74
  9. Van Der Aalst, W. M, H. A. Reijers, and M. Song., "Discovering social networks from event logs." Journal of Computer Supported Cooperative Work (CSCW), Vol. 14, No. 6, pp. 549-593, 2005. http://dx.doi.org/10.1007/s10606-005-9005-9
  10. J. Song, M. Kim, H. Kim, K. Kim, "A Framework : Workflow-based Social Network Discovery and Analysis", Proceedings of the 13th International Conference on Computational Science and Engineering, pp. 421-426, 2010.
  11. M. Park, K. Kim, "Control-Path Oriented Workflow Intelligence Analaysis", Journal of Information Science and Engineering, Vol. 24, No. 2, pp. 343-359, 2008. http://dx.doi.org/10.1109/ICCIT.2007.212
  12. M. Park, K. Kim, "A Workflow Event Logging Mechanism and Its Implications on Quality of Workflows", Journal of Information Science and Eingineering, Vol. 26, No. 5, pp. 1817-1830, 2010.
  13. K. Kim, C.A. ELLIS, "Workflow Reduction for Reachable-path Rediscovery in Workflow Mining", Foundations and Novel Approaches in Data Mining, Vol. 9, pp. 288-309, 2006. http://dx.doi.org/10.1007/11539827_17
  14. Page. Lawrence, et al., "The PageRank citation ranking: Bringing order to the web.", 1999. http://ilpubs.stanford.edu:8090/422/
  15. K. Okamoto, W. Chen, X.Y. Li, "Ranking of Closeness Centrality for Large-Scale Social Networks", Lecture Notes in Computer Science of Frontiers in Algorithmics, Vol. 50 No. 59, pp. 186-195, 2008.
  16. K. Faust, "Centrality in affiliation netwokrs", Social Networks, Vol. 19, No. 2, pp.157-191, 1997. https://doi.org/10.1016/S0378-8733(96)00300-0
  17. Borgatti, Stephen P., and Daniel S. Halgin, "Analyzing affiliation networks." The Sage handbook of social network analysis, pp. 417-433, 2011.
  18. H. Ahn, C. Park, K. Kim, "A correspondence analysis framework for workflow-supported performer-activity affiliation networks", Advanced Communication Technology (ICACT), 2014 16th International Conference on. IEEE, 2014.
  19. E. Yan, D. Ying, "Applying centrality measures to impact analysis: A coauthorship network analysis." Journal of the American Society for Information Science and Technology, Vol. 60, No. 10, pp. 2107-2118, 2009. https://doi.org/10.1002/asi.21128
  20. T. Frank, "A Family of Affiliation Indices for Two-Mode Networks." Journal of Social Structure Vol. 14, 2013.