A type of workflow affiliation network is one of the specialized social network types, which represents the associative relation between actors and activities. There are many methods on a workflow affiliation network measuring centralities such as degree centrality, closeness centrality, betweenness centrality, eigenvector centrality. In particular, we are interested in the closeness centrality measurements on a workflow affiliation network discovered from enterprise workflow models, and we know that the time complexity problem is raised according to increasing the size of the workflow affiliation network. This paper proposes an estimated ranking algorithm and analyzes the accuracy and average computation time of the proposed algorithm. As a result, we show that the accuracy improves 47.5%, 29.44% in the sizes of network and the rates of samples, respectively. Also the estimated ranking algorithm's average computation time improves more than 82.40%, comparison with the original algorithm, when the network size is 2400, sampling rate is 30%.
This paper theoretically derives an algorithm to discover a new type of workflow-based knowledge from workflow models, which is termed workflow-based affiliation network knowledge. In general, workflow intelligence (or business process intelligence) technology consists of four types of techniques that discover, analyze, monitor and control, and predict a series of workflow-based knowledge from workflow models and their execution histories. So, this paper proposes a knowledge discovery algorithm which is able to discover workflow-based affiliation networks that represent the association and participation relationships between activities and performers defined in ICN-based workflow models. In order particularly to prove the correctness and feasibility of the proposed algorithm, this paper tries to apply the algorithm to a specific workflow model and to show that it is able to derive its corresponding workflow-based affiliation network knowledge.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.2
/
pp.691-708
/
2014
This paper formalizes a special type of social networking knowledge, which is called "workflow performer-role affiliation networking knowledge." A workflow model specifies execution sequences of the associated activities and their affiliated relationships with roles, performers, invoked-applications, and relevant data. In Particular, these affiliated relationships exhibit a stream of organizational work-sharing knowledge and utilize business process intelligence to explore resources allotting and planning knowledge concealed in the corresponding workflow model. In this paper, we particularly focus on the performer-role affiliation relationships and their implications as organizational and business process intelligence in workflow-driven organizations. We elaborate a series of theoretical formalisms and practical implementation for modeling, discovering, and visualizing workflow performer-role affiliation networking knowledge, and practical details as workflow performer-role affiliation knowledge representation, discovery, and visualization techniques. These theoretical concepts and practical algorithms are based upon information control net methodology for formally describing workflow models, and the affiliated knowledge eventually represents the various degrees of involvements and participations between a group of performers and a group of roles in a corresponding workflow model. Finally, we summarily describe the implications of the proposed affiliation networking knowledge as business process intelligence, and how worthwhile it is in discovering and visualizing the knowledge in workflow-driven organizations and enterprises that produce massively parallel interactions and large-scaled operational data collections through deploying and enacting massively parallel and large-scale workflow models.
In this paper, we propose an activity-performer bipartite matrix generation algorithm for analyzing workflow-supported human-resource affiliations in a workflow model. The workflow-supported human-resource means that all performers of the organization managed by a workflow management system have to be affiliated with a certain set of activities in enacting the corresponding workflow model. We define an activity-performer affiliation network model that is a special type of social networks representing affiliation relationships between a group of performers and a group of activities in workflow models. The algorithm proposed in this paper generates a bipartite matrix from the activity-performer affiliation network model(APANM). Eventually, the generated activity-performer bipartite matrix can be used to analyze social network properties such as, centrality, density, and correlation, and to enable the organization to obtain the workflow-supported human-resource affiliations knowledge.
In this paper we propose an algorithm for generating role-performer bipartite matrix for analyzing BPM-based human resource affiliations. Firstly, the proposed algorithm conducts the extraction of role-performer affiliation relationships from ICN(Infromation Contorl Net) based business process models. Then, the role-performer bipartite matrix is constructed in the final step of the algorithm. Conclusively, the bipartite matrix generated through the proposed algorithm ought to be used as the fundamental data structure for discovering the role-performer affiliation networking knowledge, and by using a variety of social network analysis techniques it enables us to acquire valuable analysis results about BPM-based human resource affiliations.
Muhammad Javed;Kiran Hanif;Arslan Ali Raza;Syeda Maryum Batool;Syed Muhammad Ali Haider
International Journal of Computer Science & Network Security
/
v.24
no.5
/
pp.217-223
/
2024
The current study aimed to evaluate the effectiveness of using Support Vector Machine (SVM) for political affiliation classification. The system was designed to analyze the political tweets collected from Twitter and classify them as positive, negative, and neutral. The performance analysis of the SVM classifier was based on the calculation of metrics such as accuracy, precision, recall, and f1-score. The results showed that the classifier had high accuracy and f1-score, indicating its effectiveness in classifying the political tweets. The implementation of SVM in this study is based on the principle of Structural Risk Minimization (SRM), which endeavors to identify the maximum margin hyperplane between two classes of data. The results indicate that SVM can be a reliable classification approach for the analysis of political affiliations, possessing the capability to accurately categorize both linear and non-linear information using linear, polynomial or radial basis kernels. This paper provides a comprehensive overview of using SVM for political affiliation analysis and highlights the importance of using accurate classification methods in the field of political analysis.
First, We will briefly introduce early science results of AGN observations with KVN and KaVA. KaVA is the combined array of the Korean VLBI network (KVN) and VLBI Exploration of Radio Astronomy (VERA). These include KaVA monitoring of M87, Sgr A* and a few bright blazars and KVN Search for circular polarized Blazars. Furthermore, we will present our future plan of monitoring observation of Sgr A* and M87 with KaVA and Low Radio Power AGN multi frequency polarization survey with KVN. Because of the largeness of their centralsuper-massive black holes, we select them as top-priority sources of our key science program (KSP). The main science goals of the KaVA KSP are (1) mapping the velocity field of the M87 jet and testing magnetically-driven-jet paradigm, and (2) obtaining tightest constraints on physical properties of radio emitting region in Sgr A. High sensitivity achieved through simultaneous multifrequency phase referencing technique of KVN will allow us to explore Low Radio Power AGN cores which build majority of AGNs and therefore are important for undestanding the evolution of AGNs and of their hosts.
Communications for Statistical Applications and Methods
/
v.19
no.4
/
pp.547-558
/
2012
Social network analysis is a graphical technique to search the relationships and characteristics of nodes (people, companies, and organizations) and an important node for positioning a visualized social network figure; however, it is difficult to characterize nodes in a social network figure. Therefore, their relationships and characteristics could be presented through an application of correspondence analysis to an affiliation matrix that is a type of similarity matrix between nodes. In this study, we provide the relationships and characteristics around authors and keywords in the JKSS(Journal of the Korean Statistical Society) of the Korean Statistical Society through the use of social network analysis and correspondence analysis.
This study was conducted to evaluate needs and intention of hospitals and clinics to join network with private health insurance, and to discover obstacles of participation of the networks. We carried out the questionnaire survey of the network managers of 236 medical institutions between December 27th, 2005 and January 25th, 2006. The result showed that the participation intention of network were different to the type of hospitals. Primary care clinics answered that participation intention and possibility were low. Secondary care hospitals was relatively affirmative regarding a network participation. Tertiary hospitals responded that they need the network with private health insurance, but participation possibility was lower than needs. The reason is that they worried about the side effect of the network with private health insurance. Depending on the type of hospitals, expected benefits from networking with private health insurance were different. We found that hospitals which already had affiliation with other hospitals answered in the affirmative regarding the network with private health insurance. In conclusion, to increase the effectiveness of network systems between hospital and private health insurance, the network is expected to consider different needs of the each hospital.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.8
/
pp.3568-3584
/
2016
In mobile opportunistic networks (MONs), human-carried mobile devices such as PDAs and smartphones, with the capability of short range wireless communications, could form various intermittent contacts due to the mobility of humans, and then could use the contact opportunity to communicate with each other. The dynamic changes of the network topology are closely related to the human mobility patterns. In this paper, we propose a social motivation-aware mobility model for MONs, which explains the basic laws of human mobility from the psychological point of view. We analyze and model social motivations of human mobility mainly in terms of expectancy value theory and affiliation motivation. Furthermore, we introduce a new concept of geographic functional cells, which not only incorporates the influence of geographical constraints on human mobility but also simplifies the complicated configuration of simulation areas. Lastly, we validate our model by simulating three real scenarios and comparing it with reality traces and other synthetic traces. The simulation results show that our model has a better match in the performance evaluation when applying social-based forwarding protocols like BUBBULE.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.