• Title/Summary/Keyword: Orthomosaic image

Search Result 14, Processing Time 0.026 seconds

Crack Inspection and Mapping of Concrete Bridges using Integrated Image Processing Techniques (통합 이미지 처리 기술을 이용한 콘크리트 교량 균열 탐지 및 매핑)

  • Kim, Byunghyun;Cho, Soojin
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.18-25
    • /
    • 2021
  • In many developed countries, such as South Korea, efficiently maintaining the aging infrastructures is an important issue. Currently, inspectors visually inspect the infrastructure for maintenance needs, but this method is inefficient due to its high costs, long logistic times, and hazards to the inspectors. Thus, in this paper, a novel crack inspection approach for concrete bridges is proposed using integrated image processing techniques. The proposed approach consists of four steps: (1) training a deep learning model to automatically detect cracks on concrete bridges, (2) acquiring in-situ images using a drone, (3) generating orthomosaic images based on 3D modeling, and (4) detecting cracks on the orthmosaic image using the trained deep learning model. Cascade Mask R-CNN, a state-of-the-art instance segmentation deep learning model, was trained with 3235 crack images that included 2415 hard negative images. We selected the Tancheon overpass, located in Seoul, South Korea, as a testbed for the proposed approach, and we captured images of pier 34-37 and slab 34-36 using a commercial drone. Agisoft Metashape was utilized as a 3D model generation program to generate an orthomosaic of the captured images. We applied the proposed approach to four orthomosaic images that displayed the front, back, left, and right sides of pier 37. Using pixel-level precision referencing visual inspection of the captured images, we evaluated the trained Cascade Mask R-CNN's crack detection performance. At the coping of the front side of pier 37, the model obtained its best precision: 94.34%. It achieved an average precision of 72.93% for the orthomosaics of the four sides of the pier. The test results show that this proposed approach for crack detection can be a suitable alternative to the conventional visual inspection method.

Automated Measurement Method for Construction Errors of Reinforced Concrete Pile Foundation Using a Drones (드론을 활용한 철근콘크리트 말뚝기초 시공 오차 자동화 측정 방법)

  • Seong, Hyeonwoo;Kim, Jinho;Kang, HyunWook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.2
    • /
    • pp.45-53
    • /
    • 2022
  • The purpose of this study is to present a model for analyzing construction errors of reinforced concrete pile foundations using drones. First, a drone is used to obtain an aerial image of the construction site, and an orthomosaic image is generated based on those images. Then, the circular pile foundation is automatically recognized from the orthomosaic image by using the Hough transform circle detection method. Finally, the distance is calculated based on the the center point of the reinforced concrete pile foundation in the overlapped data. As a case study, the proposed concrete concrete pile foundation construction quality control model was applied to the real construction site in Incheon to evaluate the proposed model.

On-site Demonstration of Topographic Surveying Techniques at Open-pit Mines using a Fixed-wing Unmanned Aerial Vehicle (Drone) (고정익 무인항공기(드론)를 이용한 노천광산 지형측량 기술의 현장실증)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.527-533
    • /
    • 2015
  • This study performed an on-site demonstration of the topographic surveying technique at a large-scale open-pit limestone mine in Korea using a fixed-wing unmanned aerial vehicle (UAV, Drone, SenseFly eBee). 288 sheets of aerial photos were taken by an automatic flight for 30 minutes under conditions of 300 m altitude and 12 m/s speed. Except for 37 aerial photos in which no keypoint was detected, 251 aerial photos were utilized for data processing including correction and matching, then an orthomosaic image and digital surface model with 7 cm grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 4 ground control points measured by differential global positioning system and those determined by fixed-wing UAV photogrammetry revealed that the root mean squared errors were around 15 cm. Because the fixed-wing UAV has relatively longer flight time and larger coverage area than rotary-wing UAVs, it can be effectively utilized in large-scale open-pit mines as a topographic surveying tool.

Image analysis technology with deep learning for monitoring the tidal flat ecosystem -Focused on monitoring the Ocypode stimpsoni Ortmann, 1897 in the Sindu-ri tidal flat - (갯벌 생태계 모니터링을 위한 딥러닝 기반의 영상 분석 기술 연구 - 신두리 갯벌 달랑게 모니터링을 중심으로 -)

  • Kim, Dong-Woo;Lee, Sang-Hyuk;Yu, Jae-Jin;Son, Seung-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.89-96
    • /
    • 2021
  • In this study, a deep-learning image analysis model was established and validated for AI-based monitoring of the tidal flat ecosystem for marine protected creatures Ocypode stimpsoni and their habitat. The data in the study was constructed using an unmanned aerial vehicle, and the U-net model was applied for the deep learning model. The accuracy of deep learning model learning results was about 0.76 and about 0.8 each for the Ocypode stimpsoni and their burrow whose accuracy was higher. Analyzing the distribution of crabs and burrows by putting orthomosaic images of the entire study area to the learned deep learning model, it was confirmed that 1,943 Ocypode stimpsoni and 2,807 burrow were distributed in the study area. Through this study, the possibility of using the deep learning image analysis technology for monitoring the tidal ecosystem was confirmed. And it is expected that it can be used in the tidal ecosystem monitoring field by expanding the monitoring sites and target species in the future.

Crack Detection Technology Based on Ortho-image Using Convolutional Neural Network (합성곱 신경망을 이용한 정사사진 기반 균열 탐지 기법)

  • Jang, Arum;Jeong, Sanggi;Park, Jinhan;, Kang Chang-hoon;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.19-27
    • /
    • 2022
  • Visual inspection methods have limitations, such as reflecting the subjective opinions of workers. Moreover, additional equipment is required when inspecting the high-rise buildings because the height is limited during the inspection. Various methods have been studied to detect concrete cracks due to the disadvantage of existing visual inspection. In this study, a crack detection technology was proposed, and the technology was objectively and accurately through AI. In this study, an efficient method was proposed that automatically detects concrete cracks by using a Convolutional Neural Network(CNN) with the Orthomosaic image, modeled with the help of UAV. The concrete cracks were predicted by three different CNN models: AlexNet, ResNet50, and ResNeXt. The models were verified by accuracy, recall, and F1 Score. The ResNeXt model had the high performance among the three models. Also, this study confirmed the reliability of the model designed by applying it to the experiment.

Estimation of channel morphology using RGB orthomosaic images from drone - focusing on the Naesung stream - (드론 RGB 정사영상 기반 하도 지형 공간 추정 방법 - 내성천 중심으로 -)

  • Woo-Chul, KANG;Kyng-Su, LEE;Eun-Kyung, JANG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.136-150
    • /
    • 2022
  • In this study, a comparative review was conducted on how to use RGB images to obtain river topographic information, which is one of the most essential data for eco-friendly river management and flood level analysis. In terms of the topographic information of river zone, to obtain the topographic information of flow section is one of the difficult topic, therefore, this study focused on estimating the river topographic information of flow section through RGB images. For this study, the river topography surveying was directly conducted using ADCP and RTK-GPS, and at the same time, and orthomosiac image were created using high-resolution images obtained by drone photography. And then, the existing developed regression equations were applied to the result of channel topography surveying by ADCP and the band values of the RGB images, and the channel bathymetry in the study area was estimated using the regression equation that showed the best predictability. In addition, CCHE2D flow modeling was simulated to perform comparative verification of the topographical informations. The modeling result with the image-based topographical information provided better water depth and current velocity simulation results, when it compared to the directly measured topographical information for which measurement of the sub-section was not performed. It is concluded that river topographic information could be obtained from RGB images, and if additional research was conducted, it could be used as a method of obtaining efficient river topographic information for river management.

How to utilize vegetation survey using drone image and image analysis software

  • Han, Yong-Gu;Jung, Se-Hoon;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.114-119
    • /
    • 2017
  • This study tried to analyze error range and resolution of drone images using a rotary wing by comparing them with field measurement results and to analyze stands patterns in actual vegetation map preparation by comparing drone images with aerial images provided by National Geographic Information Institute of Korea. A total of 11 ground control points (GCPs) were selected in the area, and coordinates of the points were identified. In the analysis of aerial images taken by a drone, error per pixel was analyzed to be 0.284 cm. Also, digital elevation model (DEM), digital surface model (DSM), and orthomosaic image were abstracted. When drone images were comparatively analyzed with coordinates of ground control points (GCPs), root mean square error (RMSE) was analyzed as 2.36, 1.37, and 5.15 m in the direction of X, Y, and Z. Because of this error, there were some differences in locations between images edited after field measurement and images edited without field measurement. Also, drone images taken in the stream and the forest and 51 and 25 cm resolution aerial images provided by the National Geographic Information Institute of Korea were compared to identify stands patterns. To have a standard to classify polygons according to each aerial image, image analysis software (eCognition) was used. As a result, it was analyzed that drone images made more precise polygons than 51 and 25 cm resolution images provided by the National Geographic Information Institute of Korea. Therefore, if we utilize drones appropriately according to characteristics of subject, we can have advantages in vegetation change survey and general monitoring survey as it can acquire detailed information and can take images continuously.

Topographic Survey at Small-scale Open-pit Mines using a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) (보급형 회전익 무인항공기(드론)를 이용한 소규모 노천광산의 지형측량)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.462-469
    • /
    • 2015
  • This study carried out a topographic survey at a small-scale open-pit limestone mine in Korea (the Daesung MDI Seoggyo office) using a popular rotary-wing unmanned aerial vehicle (UAV, Drone, DJI Phantom2 Vision+). 89 sheets of aerial photos could be obtained as a result of performing an automatic flight for 30 minutes under conditions of 100m altitude and 3m/s speed. A total of 34 million cloud points with X, Y, Z-coordinates was extracted from the aerial photos after data processing for correction and matching, then an orthomosaic image and digital surface model with 5m grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 5 ground control points measured by differential global positioning system and those determined by UAV photogrammetry revealed that the root mean squared errors of X, Y, Z-coordinates were around 10cm. Therefore, it is expected that the popular rotary-wing UAV photogrammetry can be effectively utilized in small-scale open-pit mines as a technology that is able to replace or supplement existing topographic surveying equipments.

Pine Wilt Disease Detection Based on Deep Learning Using an Unmanned Aerial Vehicle (무인항공기를 이용한 딥러닝 기반의 소나무재선충병 감염목 탐지)

  • Lim, Eon Taek;Do, Myung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.317-325
    • /
    • 2021
  • Pine wilt disease first appeared in Busan in 1998; it is a serious disease that causes enormous damage to pine trees. The Korean government enacted a special law on the control of pine wilt disease in 2005, which controls and prohibits the movement of pine trees in affected areas. However, existing forecasting and control methods have physical and economic challenges in reducing pine wilt disease that occurs simultaneously and radically in mountainous terrain. In this study, the authors present the use of a deep learning object recognition and prediction method based on visual materials using an unmanned aerial vehicle (UAV) to effectively detect trees suspected of being infected with pine wilt disease. In order to observe pine wilt disease, an orthomosaic was produced using image data acquired through aerial shots. As a result, 198 damaged trees were identified, while 84 damaged trees were identified in field surveys that excluded areas with inaccessible steep slopes and cliffs. Analysis using image segmentation (SegNet) and image detection (YOLOv2) obtained a performance value of 0.57 and 0.77, respectively.

Comparison the Mapping Accuracy of Construction Sites Using UAVs with Low-Cost Cameras

  • Jeong, Hohyun;Ahn, Hoyong;Shin, Dongyoon;Choi, Chuluong
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • The advent of a fourth industrial revolution, built on advances in digital technology, has coincided with studies using various unmanned aerial vehicles (UAVs) being performed worldwide. However, the accuracy of different sensors and their suitability for particular research studies are factors that need to be carefully evaluated. In this study, we evaluated UAV photogrammetry using smart technology. To assess the performance of digital photogrammetry, the accuracy of common procedures for generating orthomosaic images and digital surface models (DSMs) using terrestrial laser scanning (TLS) techniques was measured. Two different type of non-surveying camera(Smartphone camera, fisheye camera) were attached to UAV platform. For fisheye camera, lens distortion was corrected by considering characteristics of lens. Accuracy of orthoimage and DSM generated were comparatively analyzed using aerial and TLS data. Accuracy comparison analysis proceeded as follows. First, we used Ortho mosaic image to compare the check point with a certain area. In addition, vertical errors of camera DSM were compared and analyzed based on TLS. In this study, we propose and evaluate the feasibility of UAV photogrammetry which can acquire 3 - D spatial information at low cost in a construction site.