DOI QR코드

DOI QR Code

Fabrication and characterization of 3-D porous scaffold by polycaprolactone

폴리카프로락톤을 이용한 3차원 다공성 지지체 제조 및 특성 분석

  • Kim, Jin-Tae (Department of Advanced Material Engineering, Chungbuk National University) ;
  • Bang, Jung Wan (Department of Advanced Material Engineering, Seoul National University of Science and Technology) ;
  • Hyun, Chang-Yong (Department of Advanced Material Engineering, Seoul National University of Science and Technology) ;
  • Choi, Hyo Jeong (Department of Radiological Science, Kangwon National University) ;
  • Kim, Tae-Hyung (Department of Radiological Science, Kangwon National University)
  • 김진태 (충북대학교 신소재공학과) ;
  • 방중완 (서울과학기술대학교 신소재공학과) ;
  • 현창용 (서울과학기술대학교 신소재공학과) ;
  • 최효정 (강원대학교 방사선학과) ;
  • 김태형 (강원대학교 방사선학과)
  • Received : 2015.10.01
  • Accepted : 2016.02.04
  • Published : 2016.02.29

Abstract

This study was a preparatory experiment aimed the development of membrane scaffolds for tissue engineering. A PCL composite solution contained sodium chloride(NaCl). PCL porous membrane scaffolds were formed on a glass casting plate using a film applicator and immersed in distilled water to remove the NaCl reaching after drying. NaCl was used as a pore former for a 3 dimensional pore net-work. The dry condition parameters were $4^{\circ}C$, room temperature (RT) and $40^{\circ}C$ for each different temperatures in the drying experiment. SEM revealed the morphology of the pores in the membrane after drying and evaluated the in vitro cytotoxicity for basic bio-compatibility. The macro and micro pores existed together in the scaffold and showed a 3-dimensional pore net-working morphology at RT. The in vitro cytotoxicity test result was "grade 2" in accordance with the criterion for cytotoxicity by ISO 10993-5. The dry condition affected the formation of a 3 dimensional pore network and micro and macro pores. Therefore, these results are expected provide the basic process for the development of porous membrane scaffolds to control degradation and allow drug delivery.

본 연구는 조직공학용 지지체로 사용될 막을 개발하기 위한 초도 연구 수행으로, 염화나트륨(NaCl)을 기공형성체로 혼합한 폴리카프로락톤(PCL)용액을 유리 캐스팅판에 분주한 후 필름 어플리케이터를 이용하여 다공성 PCL필름을 성형하였다. 성형된 필름은 건조 후 증류수에 침지시켜 NaCl을 추출하여 최종 멤브레인형 다공성 지지체를 제조하였다. 3차원 다공망을 형성시키기 위하여 NaCl을 기공형성체로 이용하였으며 $4^{\circ}C$, 실온, $40^{\circ}C$의 세 가지 건조조건에 따른 다공망의 형성과 형태를 주사전자현미경(SEM)을 이용하여 관찰 하였으며 기초적인 안전성 확보를 위한 세포독성평가를 시행하였다. 세 가지의 건조조건별 결과에서는 실온 건조조건에서 거대기공과 미세기공이 혼재된 3차원 다공망이 우수하게 형성된 것이 관찰되었으며 세포독성 시험결과 ISO10993-5 규격의 세포독성 판단기준에 따라 grade 2(mildly cytotoxic)로 나타난바 생체용으로 적합하다고 볼 수 있다. 본 연구를 통하여 멤브레인형 다공성 지지체 제조에 건조조건이 3차원 다공망의 형성 및 거대기공과 미세기공이 함께 형성되는 것에도 영향을 미치는 것으로 나타났으며 이 결과는 다공성 멤브레인 지지체의 분해성 조절 및 약물 담지 효과를 개선하기 위한 연구에서 다공도의 조절에 대한 기초적인 공정이 될 수 있다.

Keywords

References

  1. RP Lanza, R Langer, WL Chick, "Principles of tissue engineering", Academic Press, pp. 221-231, 1997
  2. J.T. Kim, Sumin Lim, B.S Kim, D.Y. Lee, J.H. Choi, "Fabrication and characterization of 3-D porous collagen scaffold", J. of Biomedical Engineering Research, vol.35, pp.192-196, 2014 https://doi.org/10.9718/JBER.2014.35.6.192
  3. Kwangwoo Nam, Tsuyoshi Kimura, Seiichi Funamoto, Akio Kishida, "Preparation of a collagen/polymer hybrid gel designed for tissue membranes. part I: Controlling the polymer-collagen cross-linking process using an ethanol/water co-solvent" Acta Biomaterialia, vol.6, pp.403-408, 2010. https://doi.org/10.1016/j.actbio.2009.06.021
  4. JT Kim, DY Lee, JW Jang, TH Kim, YW Jang, "Characterization of cross linked hyaluronic acid microbeads by divinyl sulfone", J. of Biomedical Engineering Research, vol.34, pp.117-122, 2013 https://doi.org/10.9718/JBER.2013.34.3.117
  5. Marguerite Rinaudo, "Chitin and chitosan: Properties and applications", Prog. Polym. Sci. vol.31, pp.603-632, 2006 https://doi.org/10.1016/j.progpolymsci.2006.06.001
  6. Zhensheng Li, Hassna R. Ramay, Kip D. Hauch, Demin Xiao, Miqin Zhang, "Chitosan-alginate hydrid scaffolds for bone tissue engineering" Biomaterials, vol.26(18), pp.3919-3928, 2005 https://doi.org/10.1016/j.biomaterials.2004.09.062
  7. Wen-Jen Lin, Chia-Hui Lu, "Characterization and permeation of microporous poly($\varepsilon$-caprolactone) films", Journal of Membrane Science, vol.198, pp.109-118, 2002 https://doi.org/10.1016/S0376-7388(01)00652-4
  8. CH. Schugens, V. Maquet, C. Grandfils, R. Jerome, "Biodegradable and macroporous polylactide implants for cell transplantation: 1. Preparation of macroporous polylactide supports by solid-liquid phase separation", Polymer, vol.37(6), pp.1027-1038, 1996 https://doi.org/10.1016/0032-3861(96)87287-9
  9. Susan Hurrell, Ruth E. Cameron, "The effect of initial polymer morphology on the degradation and drug release form polyglycolide", Biometerials, vol.23(11), pp.2401-2409, 2002 https://doi.org/10.1016/S0142-9612(01)00376-3
  10. Yuying Xie, Jong-Soon Park, Soon-Kook Kang, "Study on the characteristics and biodegradable of synthetic PLGA membrane from lactic acid and glycolic acid", J. of the Korea Academia-Industrial cooperation Society, vol.16(4), pp.2958-2965, 2015 https://doi.org/10.5762/KAIS.2015.16.4.2958
  11. S J Park, Y S Shin, J R Lee, H B Lee, "Surface and controlled drug release properties of biodegradable polymer based on poly($\varepsilon$-caprolactone) and poly(ethylene glycol) blends", J. Korean Ind. Eng. Chem., vol.12(5), pp.523-527, 2001
  12. C. Allen, J. Han, Y. Yu, D. Maysiger, A. Eisenberg, "Polycaprolactone-${\beta}$-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone", J. Control. Rel., vol.63, pp.275-286, 2000 https://doi.org/10.1016/S0168-3659(99)00200-X
  13. A.G.A. Coombes, S.C. Rizzi, M. Williamson, J.E. Barralet, S. Downes, W.A. wallace, "Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery" Biomaterials, vol.25, pp.315-325, 2004 https://doi.org/10.1016/S0142-9612(03)00535-0
  14. N. Annabi, A. Fathi, S. M. Mithieux, A.S. Weiss, F. Dehghani, "Fabrication of porous PCL/elastin composite scaffolds for tissue engineering application", J. of Supercritical Fluids, vol.59, pp.157-167, 2011 https://doi.org/10.1016/j.supflu.2011.06.010
  15. Guiying Liao, Shengbin Jiang, Xiaojun Xu, Yangli Ke, "Electrospun aligned PLLA/PCL/HA composite fibrous membranes and their in vitro degradation behaviors", Materials Letters, vol.82, pp.159-162, 2012 https://doi.org/10.1016/j.matlet.2012.05.085
  16. K. Fukushima, D. Tabuani, C. Abbate, M. Arena, P. Rizzarelli, "Preparation, characterization and biodegradation of biopolymer nanocomposites based on fumed silica", European Polymer Journal, vo.47, pp.139-152, 2011 https://doi.org/10.1016/j.eurpolymj.2010.10.027
  17. Siwon Son, J.E. Choi, Hun Cho, D.J. Kang, D.Y. Lee, J.T. Kim, U.W. Jang, "Synthesis and characterization of porous poly($\varepsilon$-caprolactone)/silica nanocomposites", Polymer(Korea), vol.39(2), pp.323-328, 2015
  18. H. Deplanine, J.L. Gomez Ribelles, G. Gallego Ferrer, "Effect of the content of hydroxyapatite nanoparticles on the properties and bioactivity of poly(L-lactide)-Hybrid membranes", Composites Science and Technology, vol.70, pp.1805-1812, 2010 https://doi.org/10.1016/j.compscitech.2010.06.009
  19. D,M. Verissimo, R.F.C. Leitao, R.A. Ribeiro, S.D. Figueiro, A.S.B. Sombra, J.C. Goes, G.A.C. Brito, "Polyanionic collagen membranes for guided tissue regeneration: Dffect of progressive glutaraldehyde cross-linking on biocompatibility and degradation", Acta Biomaterialia, vol.6, pp.4011-4018, 2010 https://doi.org/10.1016/j.actbio.2010.04.012
  20. JK Park, J Yeom, EJ Oh, M Reddy, JY Kim, DW Cho, HP Lim, NS Kim, SW Park, HI Shin, DJ Yang, KB Park, SK Hahn, "Guided bone regeneration by poly (lactic-co-glycolic acid) grafted byaluronic acid bi-layer films for periodontal barrier applications", Acta Biomaterialia, vol.5, pp.3394-3403, 2009 https://doi.org/10.1016/j.actbio.2009.05.019
  21. ISO 10993-5, Biological evaluation of medical devices-Part 5: Tests for in vitro cytotoxicity, 2009
  22. Ji-hae Lee, Jong-Rok Lee, Ho-Jong Kang, "Preparation of poly(lactic acid) scaffolds by the particulate leaching", J. of Korean Oil Chemists' Soc., vol.20(4), pp.324-331, 2003