DOI QR코드

DOI QR Code

Naringenin-Mediated ATF3 Expression Contributes to Apoptosis in Human Colon Cancer

  • Song, Hun Min (Department of Bioresource Sciences, Andong National University) ;
  • Park, Gwang Hun (Department of Bioresource Sciences, Andong National University) ;
  • Eo, Hyun Ji (Department of Bioresource Sciences, Andong National University) ;
  • Jeong, Jin Boo (Department of Bioresource Sciences, Andong National University)
  • Received : 2015.07.23
  • Accepted : 2015.10.26
  • Published : 2016.03.01

Abstract

Naringenin (NAR) as one of the flavonoids observed in grapefruit has been reported to exhibit an anti-cancer activity. Activating transcription factor 3 (ATF3) is associated with apoptosis in human colon cancer cells. This study was performed to investigate the molecular mechanism by which NAR stimulates ATF3 expression and apoptosis in human colon cancer cells. NAR reduced the cell viability and induced an apoptosis in human colon cancer cells. ATF3 overexpression increased NAR-mediated cleaved PARP, while ATF3 knockdown attenuated the cleavage of PARP by NAR. NAR increased ATF3 expression in both protein and mRNA level, and increased the luciferase activity of ATF3 promoter in a dose-dependent manner. The responsible region for ATF3 transcriptional activation by NAR is located between -317 and -148 of ATF3 promoter. p38 inhibition blocked NAR-mediated ATF3 expression, its promoter activation and apoptosis. The results suggest that NAR induces apoptosis through p38-dependent ATF3 activation in human colon cancer cells.

Keywords

References

  1. Ahamad, M. S., Siddiqui, S., Jafri, A., Ahmad, S., Afzal, M. and Arshad,M. (2014) Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest. PLoS One 9, e110003. https://doi.org/10.1371/journal.pone.0110003
  2. Baek, S. J., Kim, J. S., Jackson, F. R., Eling, T. E., McEntee, M. F. and Lee, S. H. (2004) Epicatechin gallate-induced expression of NAG-1 is associated with growth inhibition and apoptosis in colon cancer cells. Carcinogenesis 25, 2425-2432. https://doi.org/10.1093/carcin/bgh255
  3. Bleiberg, H., Vandebroek, A., Deleu, I., Vergauwe, P., Rezaei Kalantari, H., D'Haens, G., Paesmans, M., Peeters, M., Efira, A. and Humblet, Y. (2012) A phase II randomized study of combined infusional leucovorin sodium and 5- FU versus the leucovorin calcium followed by 5-FU both in combination with irinotecan or oxaliplatin in patients with metastatic colorectal cancer. Acta Gastroenterol. Belg. 75, 14-21.
  4. Bulzomi, P., Bolli, A., Galluzzo, P., Acconcia, F., Ascenzi, P. and Marino, M. (2012) The naringenin-induced proapoptotic effect in breast cancer cell lines holds out against a high bisphenol a background. IUBMB Life 64, 690-696. https://doi.org/10.1002/iub.1049
  5. Cai, Y., Zhang, C., Nawa, T., Aso, T., Tanaka, M., Oshiro, S., Ichijo, H. and Kitajima, S. (2000) Homocysteine-responsive ATF3 gene expression in human vascular endothelial cells: activation of c-Jun NH(2)-terminal kinase and promoter response element. Blood 96, 2140-2148.
  6. Ekambaram, G., Rajendran, P., Magesh, V. and Sakthisekaran, D. (2008) Naringenin reduces tumor size and weight lost in N-methyl- N'-nitro-N-nitrosoguanidine-induced gastric carcinogenesis in rats. Nutr. Res. 28, 106-112. https://doi.org/10.1016/j.nutres.2007.12.002
  7. Esmaeili, M. A. and Alilou, M. (2014) Naringenin attenuates CCl induced hepatic inflammation by the activation of Nrf2 mediated pathway in rats. Clin. Exp. Pharmacol. Physiol. 41, 416-422. https://doi.org/10.1111/1440-1681.12230
  8. Ganapathy, E., Peramaiyan, R., Rajasekaran, D., Venkataraman, M. and Dhanapal, S. (2008) Modulatory effect of naringenin on Nmethyl- N'-nitro-N-nitrosoguanidine- and saturated sodium chloride- induced gastric carcinogenesis in male Wistar rats. Clin. Exp. Pharmacol. Physiol. 35, 1190-1196. https://doi.org/10.1111/j.1440-1681.2008.04987.x
  9. Garcia-Lafuente, A., Guillamon, E., Villares, A., Rostagno, M. A. and Martinez, J. A. (2009) Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm. Res. 58, 537-552. https://doi.org/10.1007/s00011-009-0037-3
  10. Hai, T. and Hartman, M. G. (2001) The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 273, 1-11. https://doi.org/10.1016/S0378-1119(01)00551-0
  11. Hai, T., Wolfgang, C. D., Marsee, D. K., Allen, A. E. and Sivaprasad, U. (1999) ATF3 and stress responses. Gene Expr. 7, 321-335.
  12. Kanno, S., Tomizawa, A., Ohtake, T., Koiwai, K., Ujibe, M. and Ishikawa, M. (2006) Naringenin-induced apoptosis via activation of NF-kappaB and necrosis involving the loss of ATP in human promyeloleukemia HL-60 cells. Toxicol. Lett. 166, 131-139. https://doi.org/10.1016/j.toxlet.2006.06.005
  13. Kim, K. J., Lee, J., Park, Y. and Lee, S. H. (2015) ATF3 Mediates Anti-Cancer Activity of Trans-10, cis-12-Conjugated Linoleic Acid in Human Colon Cancer Cells. Biomol. Ther. 23, 134-140. https://doi.org/10.4062/biomolther.2014.107
  14. Kuo, S. M. (1997) Dietary flavonoid and cancer prevention: evidence and potential mechanism. Crit. Rev. Oncog. 8, 47-69. https://doi.org/10.1615/CritRevOncog.v8.i1.30
  15. Lee, J. H., Park, C. H., Jung, K. C., Rhee, H. S. and Yang, C. H. (2005a). Negative regulation of beta-catenin/Tcf signaling by naringenin in AGS gastric cancer cell. Biochem. Biophys. Res. Commun. 335, 771-776. https://doi.org/10.1016/j.bbrc.2005.07.146
  16. Lee, S. H., Bahn, J. H., Whitlock, N. C. and Baek, S. J. (2010) Activating transcription factor 2 (ATF2) controls tolfenamic acid-induced ATF3 expression via MAP kinase pathways. Oncogene 29, 5182-5192. https://doi.org/10.1038/onc.2010.251
  17. Lee, S. H., Kim, J. S., Yamaguchi, K., Eling, T. E. and Baek, S. J. (2005b) Indole-3-carbinol and 3,3'-diindolylmethane induce expression of NAG-1 in a p53-independent manner. Biochem. Biophys. Res. Commun. 328, 63-69. https://doi.org/10.1016/j.bbrc.2004.12.138
  18. Lee, S. H., Min, K. W., Zhang, X. and Baek, S. J. (2013) 3,3'-diindolylmethane induces activating transcription factor 3 (ATF3) via ATF4 in human colorectal cancer cells. J. Nutr. Biochem. 24, 664-671. https://doi.org/10.1016/j.jnutbio.2012.03.016
  19. Lee, S. H., Yamaguchi, K., Kim, J. S., Eling, T. E., Safe, S., Park, Y. and Baek, S. J. (2006) Conjugated linoleic acid stimulates an antitumorigenic protein NAG-1 in an isomer specific manner. Carcinogenesis 27, 972-981. https://doi.org/10.1093/carcin/bgi268
  20. Lu, D., Chen, J. and Hai, T. (2006a) The regulation of ATF3 gene expression by mitogen-activated protein kinases. Biochem. J. 401, 559-567.
  21. Lu, D., Wolfgang, C. D. and Hai, T. (2006b) Activating transcription factor 3, a stress-inducible gene, suppresses Ras-stimulated tumorigenesis. J. Biol. Chem. 281, 10473-10481 https://doi.org/10.1074/jbc.M509278200
  22. Newman, D. J., Cragg, G. M., Holbeck, S. and Sausville, E. A. (2002) Natural products and derivatives as leads to cell cycle pathway targets in cancer chemotherapy. Curr. Cancer Drug Targets 2, 279-308. https://doi.org/10.2174/1568009023333791
  23. Pan, M. H., Ghai, G. and Ho, C.T. (2008) Food bioactives, apoptosis, and cancer. Mol. Nutr. Food Res. 52, 43-52. https://doi.org/10.1002/mnfr.200700380
  24. Pan, M. H. and Ho, C. T. (2008) Chemopreventive effects of natural dietary compounds on cancer development. Chem. Soc. Rev. 37, 2558-2574. https://doi.org/10.1039/b801558a
  25. Pietta, P. G. (2000) Flavonoids as antioxidants. J. Nat. Prod. 63, 1035-1042. https://doi.org/10.1021/np9904509
  26. Siegel, R., Ma, J., Zou, Z. and Jemal, A. (2014) Cancer statistics, 2014. CA Cancer J. Clin. 64, 9-29. https://doi.org/10.3322/caac.21208
  27. Song, H. M., Park, G. H., Eo, H. J., Lee, J. W., Kim, M. K., Lee, J. R., Lee, M. H., Koo, J. S. and Jeong, J. B. (2015) Anti-Proliferative Effect of Naringenin through p38-Dependent Downregulation of Cyclin D1 in Human Colorectal Cancer Cells. Biomol. Ther. 23, 339-344. https://doi.org/10.4062/biomolther.2015.024
  28. Totta, P., Acconcia, F., Leone, S., Cardillo, I. and Marino, M. (2004) Mechanisms of naringenin-induced apoptotic cascade in cancer cells: involvement of estrogen receptor alpha and beta signalling. IUBMB Life 56, 491-499. https://doi.org/10.1080/15216540400010792
  29. Virgili, F., Acconcia, F., Ambra, R., Rinna, A., Totta, P. and Marino, M. (2004) Nutritional flavonoids modulate estrogen receptor alpha signaling. IUBMB Life 56, 145-151. https://doi.org/10.1080/15216540410001685083
  30. Wang, H., Khor, T. O., Shu, L., Su, Z. Y., Fuentes, F., Lee, J. H. and Kong, A. N. (2012) Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med. Chem. 12, 1281-1305. https://doi.org/10.2174/187152012803833026
  31. Wang, H., Mo, P., Ren, S. and Yan C. (2010) Activating transcription factor 3 activates p53 by preventing E6-associated protein from binding to E6. J. Biol. Chem. 285, 13201-13210. https://doi.org/10.1074/jbc.M109.058669
  32. Yamaguchi, K., Lee, S. H., Kim, J. S., Wimalasena, J., Kitajima, S. and Baek, S. J. (2006) Activating transcription factor 3 and early growth response 1 are the novel targets of LY294002 in a phosphatidylinositol 3-kinase-independent pathway. Cancer Res. 66, 2376-2384. https://doi.org/10.1158/0008-5472.CAN-05-1987
  33. Yan, C., Lu, D., Hai, T. Boyd, D. D. (2005) Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBO J. 24, 2425-2435. https://doi.org/10.1038/sj.emboj.7600712
  34. Yeh, C. C., Yang, J. I., Lee, J. C., Tseng, C. N., Chan, Y. C., Hseu, Y. C., Tang, J. Y., Chuang, L. Y., Huang, H. W., Chang, F. R. and Chang, H. W. (2012) Anti-proliferative effect of methanolic extract of Gracilaria tenuistipitata on oral cancer cells involves apoptosis, DNA damage, and oxidative stress. BMC Complement. Altern. Med. 12, 142. https://doi.org/10.1186/1472-6882-12-142
  35. Yen, H. R., Liu, C. J. and Yeh, C. C. (2015) Naringenin suppresses TPA-induced tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Chem. Biol. Interact. 235, 1-9. https://doi.org/10.1016/j.cbi.2015.04.003
  36. Yin, T., Sandhu, G., Wolfgang, C. D., Burrier, A., Webb, R. L., Rigel, D. F., Hai, T. and Whelan, J. (1997) Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J. Biol. Chem. 272, 19943-19950. https://doi.org/10.1074/jbc.272.32.19943
  37. Yoon, H., Kim, T. W., Shin, S. Y., Park, M. J., Yong, Y., Kim, D. W., Islam, T., Lee, Y. H., Jung, K. Y. and Lim, Y. (2013) Design, synthesis and inhibitory activities of naringenin derivatives on human colon cancer cells. Bioorg. Med. Chem. Lett. 23, 232-238. https://doi.org/10.1016/j.bmcl.2012.10.130

Cited by

  1. Naringenin exerts anti-angiogenic effects in human endothelial cells: Involvement of ERRα/VEGF/KDR signaling pathway vol.111, 2016, https://doi.org/10.1016/j.fitote.2016.04.015
  2. Phytochemistry and bioactivity of Citrus flavonoids: a focus on antioxidant, anti-inflammatory, anticancer and cardiovascular protection activities vol.16, pp.3, 2017, https://doi.org/10.1007/s11101-017-9497-1
  3. LC-ESI-MS/MS Identification of Biologically Active Phenolic Compounds in Mistletoe Berry Extracts from Different Host Trees vol.22, pp.4, 2017, https://doi.org/10.3390/molecules22040624
  4. Site-specific gene expression profiling as a novel strategy for unravelling keloid disease pathobiology vol.12, pp.3, 2017, https://doi.org/10.1371/journal.pone.0172955
  5. The citrus flavonoid naringenin confers protection in a murine endotoxaemia model through AMPK-ATF3-dependent negative regulation of the TLR4 signalling pathway vol.6, pp.1, 2016, https://doi.org/10.1038/srep39735
  6. Natural Polyphenols for Prevention and Treatment of Cancer vol.8, pp.8, 2016, https://doi.org/10.3390/nu8080515
  7. Vitex rotundifolia Fruit Extract Induces Apoptosis Through the Downregulation of ATF3-Mediated Bcl-2 Expression in Human Colorectal Cancer Cells vol.45, pp.04, 2017, https://doi.org/10.1142/S0192415X17500483
  8. Chemopreventive effects of some popular phytochemicals on human colon cancer: a review vol.9, pp.9, 2018, https://doi.org/10.1039/C8FO00850G
  9. Beyond the Antioxidant Activity of Dietary Polyphenols in Cancer: the Modulation of Estrogen Receptors (ERs) Signaling vol.19, pp.9, 2018, https://doi.org/10.3390/ijms19092624
  10. Molecular Targets of Genistein and Its Related Flavonoids to Exert Anticancer Effects vol.20, pp.10, 2016, https://doi.org/10.3390/ijms20102420
  11. Combinatorial Epigenetics Impact of Polyphenols and Phytochemicals in Cancer Prevention and Therapy vol.20, pp.18, 2016, https://doi.org/10.3390/ijms20184567
  12. Master Regulator Activating Transcription Factor 3 (ATF3) in Metabolic Homeostasis and Cancer vol.11, pp.None, 2020, https://doi.org/10.3389/fendo.2020.00556
  13. The Role of Polyphenol (Flavonoids) Compounds in the Treatment of Cancer Cells vol.72, pp.3, 2020, https://doi.org/10.1080/01635581.2019.1637006
  14. Activating transcription factor 3 inhibits endometrial carcinoma aggressiveness via JunB suppression vol.57, pp.3, 2016, https://doi.org/10.3892/ijo.2020.5084
  15. Loss of activating transcription factor 3 prevents KRAS-mediated pancreatic cancer vol.40, pp.17, 2016, https://doi.org/10.1038/s41388-021-01771-z