References
- Ahamad, M. S., Siddiqui, S., Jafri, A., Ahmad, S., Afzal, M. and Arshad,M. (2014) Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest. PLoS One 9, e110003. https://doi.org/10.1371/journal.pone.0110003
- Baek, S. J., Kim, J. S., Jackson, F. R., Eling, T. E., McEntee, M. F. and Lee, S. H. (2004) Epicatechin gallate-induced expression of NAG-1 is associated with growth inhibition and apoptosis in colon cancer cells. Carcinogenesis 25, 2425-2432. https://doi.org/10.1093/carcin/bgh255
- Bleiberg, H., Vandebroek, A., Deleu, I., Vergauwe, P., Rezaei Kalantari, H., D'Haens, G., Paesmans, M., Peeters, M., Efira, A. and Humblet, Y. (2012) A phase II randomized study of combined infusional leucovorin sodium and 5- FU versus the leucovorin calcium followed by 5-FU both in combination with irinotecan or oxaliplatin in patients with metastatic colorectal cancer. Acta Gastroenterol. Belg. 75, 14-21.
- Bulzomi, P., Bolli, A., Galluzzo, P., Acconcia, F., Ascenzi, P. and Marino, M. (2012) The naringenin-induced proapoptotic effect in breast cancer cell lines holds out against a high bisphenol a background. IUBMB Life 64, 690-696. https://doi.org/10.1002/iub.1049
- Cai, Y., Zhang, C., Nawa, T., Aso, T., Tanaka, M., Oshiro, S., Ichijo, H. and Kitajima, S. (2000) Homocysteine-responsive ATF3 gene expression in human vascular endothelial cells: activation of c-Jun NH(2)-terminal kinase and promoter response element. Blood 96, 2140-2148.
- Ekambaram, G., Rajendran, P., Magesh, V. and Sakthisekaran, D. (2008) Naringenin reduces tumor size and weight lost in N-methyl- N'-nitro-N-nitrosoguanidine-induced gastric carcinogenesis in rats. Nutr. Res. 28, 106-112. https://doi.org/10.1016/j.nutres.2007.12.002
- Esmaeili, M. A. and Alilou, M. (2014) Naringenin attenuates CCl induced hepatic inflammation by the activation of Nrf2 mediated pathway in rats. Clin. Exp. Pharmacol. Physiol. 41, 416-422. https://doi.org/10.1111/1440-1681.12230
- Ganapathy, E., Peramaiyan, R., Rajasekaran, D., Venkataraman, M. and Dhanapal, S. (2008) Modulatory effect of naringenin on Nmethyl- N'-nitro-N-nitrosoguanidine- and saturated sodium chloride- induced gastric carcinogenesis in male Wistar rats. Clin. Exp. Pharmacol. Physiol. 35, 1190-1196. https://doi.org/10.1111/j.1440-1681.2008.04987.x
- Garcia-Lafuente, A., Guillamon, E., Villares, A., Rostagno, M. A. and Martinez, J. A. (2009) Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm. Res. 58, 537-552. https://doi.org/10.1007/s00011-009-0037-3
- Hai, T. and Hartman, M. G. (2001) The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 273, 1-11. https://doi.org/10.1016/S0378-1119(01)00551-0
- Hai, T., Wolfgang, C. D., Marsee, D. K., Allen, A. E. and Sivaprasad, U. (1999) ATF3 and stress responses. Gene Expr. 7, 321-335.
- Kanno, S., Tomizawa, A., Ohtake, T., Koiwai, K., Ujibe, M. and Ishikawa, M. (2006) Naringenin-induced apoptosis via activation of NF-kappaB and necrosis involving the loss of ATP in human promyeloleukemia HL-60 cells. Toxicol. Lett. 166, 131-139. https://doi.org/10.1016/j.toxlet.2006.06.005
- Kim, K. J., Lee, J., Park, Y. and Lee, S. H. (2015) ATF3 Mediates Anti-Cancer Activity of Trans-10, cis-12-Conjugated Linoleic Acid in Human Colon Cancer Cells. Biomol. Ther. 23, 134-140. https://doi.org/10.4062/biomolther.2014.107
- Kuo, S. M. (1997) Dietary flavonoid and cancer prevention: evidence and potential mechanism. Crit. Rev. Oncog. 8, 47-69. https://doi.org/10.1615/CritRevOncog.v8.i1.30
- Lee, J. H., Park, C. H., Jung, K. C., Rhee, H. S. and Yang, C. H. (2005a). Negative regulation of beta-catenin/Tcf signaling by naringenin in AGS gastric cancer cell. Biochem. Biophys. Res. Commun. 335, 771-776. https://doi.org/10.1016/j.bbrc.2005.07.146
- Lee, S. H., Bahn, J. H., Whitlock, N. C. and Baek, S. J. (2010) Activating transcription factor 2 (ATF2) controls tolfenamic acid-induced ATF3 expression via MAP kinase pathways. Oncogene 29, 5182-5192. https://doi.org/10.1038/onc.2010.251
- Lee, S. H., Kim, J. S., Yamaguchi, K., Eling, T. E. and Baek, S. J. (2005b) Indole-3-carbinol and 3,3'-diindolylmethane induce expression of NAG-1 in a p53-independent manner. Biochem. Biophys. Res. Commun. 328, 63-69. https://doi.org/10.1016/j.bbrc.2004.12.138
- Lee, S. H., Min, K. W., Zhang, X. and Baek, S. J. (2013) 3,3'-diindolylmethane induces activating transcription factor 3 (ATF3) via ATF4 in human colorectal cancer cells. J. Nutr. Biochem. 24, 664-671. https://doi.org/10.1016/j.jnutbio.2012.03.016
- Lee, S. H., Yamaguchi, K., Kim, J. S., Eling, T. E., Safe, S., Park, Y. and Baek, S. J. (2006) Conjugated linoleic acid stimulates an antitumorigenic protein NAG-1 in an isomer specific manner. Carcinogenesis 27, 972-981. https://doi.org/10.1093/carcin/bgi268
- Lu, D., Chen, J. and Hai, T. (2006a) The regulation of ATF3 gene expression by mitogen-activated protein kinases. Biochem. J. 401, 559-567.
- Lu, D., Wolfgang, C. D. and Hai, T. (2006b) Activating transcription factor 3, a stress-inducible gene, suppresses Ras-stimulated tumorigenesis. J. Biol. Chem. 281, 10473-10481 https://doi.org/10.1074/jbc.M509278200
- Newman, D. J., Cragg, G. M., Holbeck, S. and Sausville, E. A. (2002) Natural products and derivatives as leads to cell cycle pathway targets in cancer chemotherapy. Curr. Cancer Drug Targets 2, 279-308. https://doi.org/10.2174/1568009023333791
- Pan, M. H., Ghai, G. and Ho, C.T. (2008) Food bioactives, apoptosis, and cancer. Mol. Nutr. Food Res. 52, 43-52. https://doi.org/10.1002/mnfr.200700380
- Pan, M. H. and Ho, C. T. (2008) Chemopreventive effects of natural dietary compounds on cancer development. Chem. Soc. Rev. 37, 2558-2574. https://doi.org/10.1039/b801558a
- Pietta, P. G. (2000) Flavonoids as antioxidants. J. Nat. Prod. 63, 1035-1042. https://doi.org/10.1021/np9904509
- Siegel, R., Ma, J., Zou, Z. and Jemal, A. (2014) Cancer statistics, 2014. CA Cancer J. Clin. 64, 9-29. https://doi.org/10.3322/caac.21208
- Song, H. M., Park, G. H., Eo, H. J., Lee, J. W., Kim, M. K., Lee, J. R., Lee, M. H., Koo, J. S. and Jeong, J. B. (2015) Anti-Proliferative Effect of Naringenin through p38-Dependent Downregulation of Cyclin D1 in Human Colorectal Cancer Cells. Biomol. Ther. 23, 339-344. https://doi.org/10.4062/biomolther.2015.024
- Totta, P., Acconcia, F., Leone, S., Cardillo, I. and Marino, M. (2004) Mechanisms of naringenin-induced apoptotic cascade in cancer cells: involvement of estrogen receptor alpha and beta signalling. IUBMB Life 56, 491-499. https://doi.org/10.1080/15216540400010792
- Virgili, F., Acconcia, F., Ambra, R., Rinna, A., Totta, P. and Marino, M. (2004) Nutritional flavonoids modulate estrogen receptor alpha signaling. IUBMB Life 56, 145-151. https://doi.org/10.1080/15216540410001685083
- Wang, H., Khor, T. O., Shu, L., Su, Z. Y., Fuentes, F., Lee, J. H. and Kong, A. N. (2012) Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med. Chem. 12, 1281-1305. https://doi.org/10.2174/187152012803833026
- Wang, H., Mo, P., Ren, S. and Yan C. (2010) Activating transcription factor 3 activates p53 by preventing E6-associated protein from binding to E6. J. Biol. Chem. 285, 13201-13210. https://doi.org/10.1074/jbc.M109.058669
- Yamaguchi, K., Lee, S. H., Kim, J. S., Wimalasena, J., Kitajima, S. and Baek, S. J. (2006) Activating transcription factor 3 and early growth response 1 are the novel targets of LY294002 in a phosphatidylinositol 3-kinase-independent pathway. Cancer Res. 66, 2376-2384. https://doi.org/10.1158/0008-5472.CAN-05-1987
- Yan, C., Lu, D., Hai, T. Boyd, D. D. (2005) Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBO J. 24, 2425-2435. https://doi.org/10.1038/sj.emboj.7600712
- Yeh, C. C., Yang, J. I., Lee, J. C., Tseng, C. N., Chan, Y. C., Hseu, Y. C., Tang, J. Y., Chuang, L. Y., Huang, H. W., Chang, F. R. and Chang, H. W. (2012) Anti-proliferative effect of methanolic extract of Gracilaria tenuistipitata on oral cancer cells involves apoptosis, DNA damage, and oxidative stress. BMC Complement. Altern. Med. 12, 142. https://doi.org/10.1186/1472-6882-12-142
- Yen, H. R., Liu, C. J. and Yeh, C. C. (2015) Naringenin suppresses TPA-induced tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Chem. Biol. Interact. 235, 1-9. https://doi.org/10.1016/j.cbi.2015.04.003
- Yin, T., Sandhu, G., Wolfgang, C. D., Burrier, A., Webb, R. L., Rigel, D. F., Hai, T. and Whelan, J. (1997) Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J. Biol. Chem. 272, 19943-19950. https://doi.org/10.1074/jbc.272.32.19943
- Yoon, H., Kim, T. W., Shin, S. Y., Park, M. J., Yong, Y., Kim, D. W., Islam, T., Lee, Y. H., Jung, K. Y. and Lim, Y. (2013) Design, synthesis and inhibitory activities of naringenin derivatives on human colon cancer cells. Bioorg. Med. Chem. Lett. 23, 232-238. https://doi.org/10.1016/j.bmcl.2012.10.130
Cited by
- Naringenin exerts anti-angiogenic effects in human endothelial cells: Involvement of ERRα/VEGF/KDR signaling pathway vol.111, 2016, https://doi.org/10.1016/j.fitote.2016.04.015
- Phytochemistry and bioactivity of Citrus flavonoids: a focus on antioxidant, anti-inflammatory, anticancer and cardiovascular protection activities vol.16, pp.3, 2017, https://doi.org/10.1007/s11101-017-9497-1
- LC-ESI-MS/MS Identification of Biologically Active Phenolic Compounds in Mistletoe Berry Extracts from Different Host Trees vol.22, pp.4, 2017, https://doi.org/10.3390/molecules22040624
- Site-specific gene expression profiling as a novel strategy for unravelling keloid disease pathobiology vol.12, pp.3, 2017, https://doi.org/10.1371/journal.pone.0172955
- The citrus flavonoid naringenin confers protection in a murine endotoxaemia model through AMPK-ATF3-dependent negative regulation of the TLR4 signalling pathway vol.6, pp.1, 2016, https://doi.org/10.1038/srep39735
- Natural Polyphenols for Prevention and Treatment of Cancer vol.8, pp.8, 2016, https://doi.org/10.3390/nu8080515
- Vitex rotundifolia Fruit Extract Induces Apoptosis Through the Downregulation of ATF3-Mediated Bcl-2 Expression in Human Colorectal Cancer Cells vol.45, pp.04, 2017, https://doi.org/10.1142/S0192415X17500483
- Chemopreventive effects of some popular phytochemicals on human colon cancer: a review vol.9, pp.9, 2018, https://doi.org/10.1039/C8FO00850G
- Beyond the Antioxidant Activity of Dietary Polyphenols in Cancer: the Modulation of Estrogen Receptors (ERs) Signaling vol.19, pp.9, 2018, https://doi.org/10.3390/ijms19092624
- Molecular Targets of Genistein and Its Related Flavonoids to Exert Anticancer Effects vol.20, pp.10, 2016, https://doi.org/10.3390/ijms20102420
- Combinatorial Epigenetics Impact of Polyphenols and Phytochemicals in Cancer Prevention and Therapy vol.20, pp.18, 2016, https://doi.org/10.3390/ijms20184567
- Master Regulator Activating Transcription Factor 3 (ATF3) in Metabolic Homeostasis and Cancer vol.11, pp.None, 2020, https://doi.org/10.3389/fendo.2020.00556
- The Role of Polyphenol (Flavonoids) Compounds in the Treatment of Cancer Cells vol.72, pp.3, 2020, https://doi.org/10.1080/01635581.2019.1637006
- Activating transcription factor 3 inhibits endometrial carcinoma aggressiveness via JunB suppression vol.57, pp.3, 2016, https://doi.org/10.3892/ijo.2020.5084
- Loss of activating transcription factor 3 prevents KRAS-mediated pancreatic cancer vol.40, pp.17, 2016, https://doi.org/10.1038/s41388-021-01771-z