DOI QR코드

DOI QR Code

Aspirin-Triggered Resolvin D1 Inhibits TGF-β1-Induced EndMT through Increasing the Expression of Smad7 and Is Closely Related to Oxidative Stress

  • Shu, Yusheng (Department of Cardiothoracic Surgery, Clinical Medicine College of Yangzhou University, Subei People's Hospital) ;
  • Liu, Yu (Department of Cardiothoracic Surgery, Clinical Medicine College of Yangzhou University, Subei People's Hospital) ;
  • Li, Xinxin (Department of Cardiothoracic Surgery, Subei People's Hospital) ;
  • Cao, Ling (Department of Endocrinology, Clinical Medicine College of Yangzhou University, Subei People's Hospital) ;
  • Yuan, Xiaolong (Department of Cardiothoracic Surgery, Clinical Medicine College of Yangzhou University, Subei People's Hospital) ;
  • Li, Wenhui (Department of Cardiothoracic Surgery, Clinical Medicine College of Yangzhou University, Subei People's Hospital) ;
  • Cao, Qianqian (Department of Cardiothoracic Surgery, Subei People's Hospital)
  • Received : 2015.07.01
  • Accepted : 2015.11.12
  • Published : 2016.03.01

Abstract

The endothelial-mesenchymal transition (EndMT) is known to be involved in the transformation of vascular endothelial cells to mesenchymal cells. EndMT has been confirmed that occur in various pathologic conditions. Transforming growth factor ${\beta}1$ (TGF-${\beta}1$) is a potent stimulator of the vascular endothelial to mesenchymal transition (EMT). Aspirin-triggered resolvin D1 (AT-RvD1) has been known to be involved in the resolution of inflammation, but whether it has effects on TGF-${\beta}1$-induced EndMT is not yet clear. Therefore, we investigated the effects of AT-RvD1 on the EndMT of human umbilical vein vascular endothelial cells line (HUVECs). Treatment with TGF-${\beta}1$ reduced the expression of Nrf2 and enhanced the level of F-actin, which is associated with paracellular permeability. The expression of endothelial marker VE-cadherin in HUVEC cells was reduced, and the expression of mesenchymal marker vimentin was enhanced. AT-RvD1 restored the expression of Nrf2 and vimentin and enhanced the expression of VE-cadherin. AT-RvD1 did also affect the migration of HUVEC cells. Inhibitory ${\kappa}B$ kinase 16 (IKK 16), which is known to inhibit the NF-${\kappa}B$ pathway, had an ability to increase the expression of Nrf2 and was associated with the inhibition effect of AT-RvD1 on TGF-${\beta}1$-induced EndMT, but it had no effect on TGF-${\beta}1$-induced EndMT alone. Smad7, which is a key regulator of TGF-${\beta}$/Smads signaling by negative feedback loops, was significantly increased with the treatment of AT-RvD1. These results suggest the possibility that AT-RvD1 suppresses the TGF-${\beta}1$-induced EndMT through increasing the expression of Smad7 and is closely related to oxidative stress.

Keywords

References

  1. Allen, M. and Louise Jones, J. (2011) Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J. Pathol. 223, 162-176.
  2. Aisagbonhi, O., Rai, M., Ryzhov, S., Atria, N., Feoktistov, I. and Hatzopoulos, A. K. (2011) Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis. Model. Mech. 4, 469-483. https://doi.org/10.1242/dmm.006510
  3. Anastasiou, D., Poulogiannis, G., Asara, J. M., Boxer, M. B., Jiang, J. K., Shen, M., Bellinger, G., Sasaki, A, T., Locasale, J, W., Auld, D,S., Thomas, C,J., Heiden, M, G, V. and Cantley, L. C. (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278-1283. https://doi.org/10.1126/science.1211485
  4. Benton, R. L., Maddie, M. A., Dincman, T. A., Hagg, T. and Whittemore, S. R. (2009) Transcriptional activation of endothelial cells by $TGF{\beta}$ coincides with acute microvascular plasticity following focal spinal cord ischaemia/reperfusion injury. ASN Neuro. 1, 181-184. https://doi.org/10.1042/AN20090008
  5. Churchman, A. T., Anwar, A. A., Li, F. Y., Sato, H., Ishii, T., Mann, G. E. and Siow, R. (2009) Transforming growth factor-$\beta$1 elicits Nrf2-mediated antioxidant responses in aortic smooth muscle cells. J. Cell. Mol. Med. 13, 2282-2292. https://doi.org/10.1111/j.1582-4934.2009.00874.x
  6. Cox, Jr, R., Phillips, O., Fukumoto, J., Fukumoto, I., Tamarapu Parthasarathy, P., Arias, S., Cho, Y., Lockey, R. F. and Kolliputi, N. (2015) Aspirin-Triggered Resolvin D1 Treatment Enhances Resolution of Hyperoxic Acute Lung Injury. Am. J. Respir. Cell Mol. Biol. 53, 422-435. https://doi.org/10.1165/rcmb.2014-0339OC
  7. Choi, H. Y., Lee, H. G., Kim, B. S., Ahn, S. H., Jung, A., Lee, M., Lee, J.E., Kim, H. J., Ha, S. K. and Park, H. C. (2015) Mesenchymal stem cell-derived microparticles ameliorate peritubular capillary rarefaction via inhibition of endothelial-mesenchymal transition and decrease tubulointerstitial fibrosis in unilateral ureteral obstruction. Stem Cell Res. Ther. 6, 18. https://doi.org/10.1186/s13287-015-0012-6
  8. Edens, H. A. and Parkos, C. A. (2000) Modulation of epithelial and endothelial paracellular permeability by leukocytes. Adv. Drug Deliv. Rev. 41, 315-328. https://doi.org/10.1016/S0169-409X(00)00049-1
  9. Emmanuel, C., Huynh, M., Matthews, J., Kelly, E. and Zoellner, H. (2013) TNF-${\alpha}$ and TGF-$\beta$ synergistically stimulate elongation of human endothelial cells without transdifferentiation to smooth muscle cell phenotype. Cytokine 61, 38-40. https://doi.org/10.1016/j.cyto.2012.09.017
  10. Garside, V. C., Chang, A. C., Karsan, A. and Hoodless, P. A. (2013) Co-ordinating Notch, BMP, and TGF-$\beta$ signaling during heart valve development. Cell. Mol. Life Sci. 70, 2899-2917. https://doi.org/10.1007/s00018-012-1197-9
  11. Gonzalez, D. M. and Medici, D. (2014) Signaling mechanisms of the epithelial-mesenchymal transition. Sci. Signal. 7, re8. https://doi.org/10.1126/scisignal.2005189
  12. Goumans, M. J., Valdimarsdottir, G., Itoh, S., Lebrin, F., Larsson, J., Mummery, C., Karlsson, S. and ten Dijke, P. (2003) Activin receptor-like kinase (ALK) 1 is an antagonistic mediator of lateral $TGF{\beta}$/ ALK5 signaling. Mol. Cell 12, 817-828. https://doi.org/10.1016/S1097-2765(03)00386-1
  13. Harrison, J. L., Rowe, R. K., Ellis, T. W., Yee, N. S., O'Hara, B. F., Adelson, P. D. and Lifshitz, J. (2015) Resolvins AT-D1 and E1 differentially impact functional outcome, post-traumatic sleep, and microglial activation following diffuse brain injury in the mouse. Brain Behav. Immun. 47, 131-140. https://doi.org/10.1016/j.bbi.2015.01.001
  14. Inoue, Y. and Imamura, T. (2008) Regulation of TGF-$\beta$ family signaling by E3 ubiquitin ligases. Cancer Sci. 99, 2107-2112. https://doi.org/10.1111/j.1349-7006.2008.00925.x
  15. Jaffe, E. A., Nachman, R. L., Becker, C. G. and Minick, C. R. (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52, 2745-2756. https://doi.org/10.1172/JCI107470
  16. Krizbai, I. A., Gasparics, A., Nagyoszi, P., Fazakas, C., Molnar, J., Wilhelm, I., Bencs R,. Rosivall L. and Sebe, A. (2015) Endothelial-Mesenchymal Transition of Brain Endothelial Cells: Possible Role during Metastatic Extravasation. PLoS One 10, e0119655. https://doi.org/10.1371/journal.pone.0119655
  17. Kevil, C. G., Oshima, T., Alexander, B., Coe, L. L. and Alexander, J. S. (2000) $H_2O_2$-mediated permeability: role of MAPK and occludin. Am. J. Physiol. Cell Physiol. 279, C21-C30. https://doi.org/10.1152/ajpcell.2000.279.1.C21
  18. Kobayashi, M. and Yamamoto, M. (2005) Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid. Redox Signal. 7, 385-394. https://doi.org/10.1089/ars.2005.7.385
  19. Kashihara, N., Haruna, Y., Kondeti, V. K. and Kanwar, Y. S. (2010) Oxidative stress in diabetic nephropathy. Curr. Med. Chem. 17, 4256-4269. https://doi.org/10.2174/092986710793348581
  20. Kaneda, H., Arao, T., Matsumoto, K., De Velasco, M. A., Tamura, D., Aomatsu, K., Kudo, K., Sakai, K., Nagai, T., Fujita, Y., Tanaka, K., Yanagihara, K., Yamada, Y., Okamato, I., Nakagawa, K. and Nishio, K. (2011) Activin A inhibits vascular endothelial cell growth and suppresses tumour angiogenesis in gastric cancer. Br. J. Cancer 105, 1210-1217. https://doi.org/10.1038/bjc.2011.348
  21. Lee, H. J., Park, M. K., Lee, E. J. and Lee, C. H. (2013) Resolvin D1 inhibits TGF-$\beta{1}$-induced epithelial mesenchymal transition of A549 lung cancer cells via lipoxin A4 receptor/formyl peptide receptor 2 and GPR32. Int. J. Biochem. Cell Biol. 45, 2801-2807. https://doi.org/10.1016/j.biocel.2013.09.018
  22. Medici, D., Shore, E. M., Lounev, V. Y., Kaplan, F. S., Kalluri, R. and Olsen, B. R. (2010) Conversion of vascular endothelial cells into multipotent stem-like cells. Nat. Med. 16, 1400-1406. https://doi.org/10.1038/nm.2252
  23. Ng, Y. Y., Hou, C. C., Wang, W., Huang, X. R. and Lan, H. Y. (2005) Blockade of $NF{\kappa}B$ activation and renal inflammation by ultrasoundmediated gene transfer of Smad7 in rat remnant kidney. Kidney Int. Suppl. 67, S83-S91. https://doi.org/10.1111/j.1523-1755.2005.09421.x
  24. Ryoo, I. G., Ha, H. and Kwak, M. K. (2014) Inhibitory role of the KEAP1- NRF2 pathway in $TGF{\beta}1$-stimulated renal epithelial transition to fibroblastic cells: a modulatory effect on SMAD signaling. PLoS One 9, e93265. https://doi.org/10.1371/journal.pone.0093265
  25. Shu, Y. S., Tao, W., Miao, Q. B., Zhu, Y. B. and Yang, Y. F. (2014) Improvement of ventilation-induced lung injury in a rodent model by inhibition of inhibitory ${\kappa}B$ kinase. J. Trauma Acute. Care Surg. 76, 1417-1424. https://doi.org/10.1097/TA.0000000000000229
  26. Serhan, C. N., Hong, S., Gronert, K., Colgan, S. P., Devchand, P. R., Mirick, G. and Moussignac, R. L. (2002) Resolvins a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 196, 1025-1037. https://doi.org/10.1084/jem.20020760
  27. Spite, M., Norling, L. V., Summers, L., Yang, R., Cooper, D., Petasis, N. A., Flower, R. J., Perretti, M. and Serhan, C. N. (2009) Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 461, 1287-1291. https://doi.org/10.1038/nature08541
  28. Thiery, J. P. (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr. Opin. Cell Biol. 15, 740-746. https://doi.org/10.1016/j.ceb.2003.10.006
  29. Van Meeteren, L. A. and Ten Dijke, P. (2012) Regulation of endothelial cell plasticity by TGF-$\beta$. Cell Tissue Res. 347, 177-186. https://doi.org/10.1007/s00441-011-1222-6
  30. Wu, S. H., Zhang, Y. M., Tao, H. X. and Dong, L. (2010) Lipoxin A4 inhibits transition of epithelial to mesenchymal cells in proximal tubules. Am. J. Nephrol. 32, 122-136. https://doi.org/10.1159/000315121
  31. Xiao, L., Kim, D. J., Davis, C. L., McCann, J. V., Dunleavey, J. M., Vanderlinden, A. K., Xu, N., Pattenden, S. G., Frye, S. V., Xu, X., Onaitis, M., Monaghan-Benson, E., Burridge, K. and Dudley, A. C. (2015) Tumor endothelial cells with distinct patterns of $TGF{\beta}$- driven endothelial-to-mesenchymal transition. Cancer Res. 75, 1244-1254. https://doi.org/10.1158/0008-5472.CAN-14-1616
  32. Yao, Y., Jumabay, M., Ly, A., Radparvar, M., Cubberly, M. R. and Boström, K. I. (2013) A role for the endothelium in vascular calcification. Circ. Res. 113, 495-504. https://doi.org/10.1161/CIRCRESAHA.113.301792
  33. Yan, X., Liu, Z. and Chen, Y. (2009) Regulation of TGF-$\beta$ signaling by Smad7. Acta Biochim. Biophys. Sin. (Shanghai). 41, 263-272. https://doi.org/10.1093/abbs/gmp018
  34. Zeisberg, E. M., Potenta, S., Xie, L., Zeisberg, M. and Kalluri, R. (2007) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 67, 10123-10128. https://doi.org/10.1158/0008-5472.CAN-07-3127
  35. Zhang, X., Wang, T., Gui, P., Yao, C., Sun, W., Wang, L., Wang, H., Xie, W., Yao, S., Lin, Y. and Wu, Q. (2013) Resolvin D1 reverts lipopolysaccharide-induced TJ proteins disruption and the increase of cellular permeability by regulating $I{\kappa}B{\alpha}$ signaling in human vascular endothelial cells. Oxid. Med. Cell. Longev. 2013, 185715.

Cited by

  1. Role of endothelial-to-mesenchymal transition induced by TGF-β1 in transplant kidney interstitial fibrosis 2017, https://doi.org/10.1111/jcmm.13157
  2. Endothelial to mesenchymal transition in the cardiovascular system vol.184, 2017, https://doi.org/10.1016/j.lfs.2017.07.014
  3. Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells vol.590, pp.8, 2016, https://doi.org/10.1002/1873-3468.12158
  4. Salvianolic Acid A, a Component of Salvia miltiorrhiza, Attenuates Endothelial–Mesenchymal Transition of HPAECs Induced by Hypoxia vol.45, pp.06, 2017, https://doi.org/10.1142/S0192415X17500653
  5. Synergistic effect of nutlin-3 combined with aspirin in hepatocellular carcinoma HepG2 cells through activation of Bcl-2/Bax signaling pathway vol.17, pp.3, 2018, https://doi.org/10.3892/mmr.2017.8346
  6. The Effect of Salvianolic Acid on Vascular Protection and Possible Mechanisms vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/5472096
  7. EOFAZ inhibits endothelial-to-mesenchymal transition through downregulation of KLF4 vol.46, pp.1, 2016, https://doi.org/10.3892/ijmm.2020.4572
  8. Protective Effects and Molecular Signaling of n-3 Fatty Acids on Oxidative Stress and Inflammation in Retinal Diseases vol.9, pp.10, 2016, https://doi.org/10.3390/antiox9100920
  9. Endothelial to Mesenchymal Transition in the Cardiogenesis and Cardiovascular Diseases vol.16, pp.4, 2020, https://doi.org/10.2174/1573403x15666190808100336
  10. Therapeutic Effects of Specialized Pro-Resolving Lipids Mediators on Cardiac Fibrosis via NRF2 Activation vol.9, pp.12, 2020, https://doi.org/10.3390/antiox9121259
  11. Impact of resolvin mediators in the immunopathology of diabetes and wound healing vol.17, pp.6, 2016, https://doi.org/10.1080/1744666x.2021.1912598
  12. Modulation of EndMT by Hydrogen Sulfide in the Prevention of Cardiovascular Fibrosis vol.10, pp.6, 2021, https://doi.org/10.3390/antiox10060910
  13. ATRvD1 Attenuates Renal Tubulointerstitial Injury Induced by Albumin Overload in Sepsis-Surviving Mice vol.22, pp.21, 2016, https://doi.org/10.3390/ijms222111634