Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.109

Naringenin-Mediated ATF3 Expression Contributes to Apoptosis in Human Colon Cancer  

Song, Hun Min (Department of Bioresource Sciences, Andong National University)
Park, Gwang Hun (Department of Bioresource Sciences, Andong National University)
Eo, Hyun Ji (Department of Bioresource Sciences, Andong National University)
Jeong, Jin Boo (Department of Bioresource Sciences, Andong National University)
Publication Information
Biomolecules & Therapeutics / v.24, no.2, 2016 , pp. 140-146 More about this Journal
Abstract
Naringenin (NAR) as one of the flavonoids observed in grapefruit has been reported to exhibit an anti-cancer activity. Activating transcription factor 3 (ATF3) is associated with apoptosis in human colon cancer cells. This study was performed to investigate the molecular mechanism by which NAR stimulates ATF3 expression and apoptosis in human colon cancer cells. NAR reduced the cell viability and induced an apoptosis in human colon cancer cells. ATF3 overexpression increased NAR-mediated cleaved PARP, while ATF3 knockdown attenuated the cleavage of PARP by NAR. NAR increased ATF3 expression in both protein and mRNA level, and increased the luciferase activity of ATF3 promoter in a dose-dependent manner. The responsible region for ATF3 transcriptional activation by NAR is located between -317 and -148 of ATF3 promoter. p38 inhibition blocked NAR-mediated ATF3 expression, its promoter activation and apoptosis. The results suggest that NAR induces apoptosis through p38-dependent ATF3 activation in human colon cancer cells.
Keywords
Naringenin; Activating transcription factor 3; Cancer chemoprevention; Human colon cancer;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ahamad, M. S., Siddiqui, S., Jafri, A., Ahmad, S., Afzal, M. and Arshad,M. (2014) Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest. PLoS One 9, e110003.   DOI
2 Baek, S. J., Kim, J. S., Jackson, F. R., Eling, T. E., McEntee, M. F. and Lee, S. H. (2004) Epicatechin gallate-induced expression of NAG-1 is associated with growth inhibition and apoptosis in colon cancer cells. Carcinogenesis 25, 2425-2432.   DOI
3 Bleiberg, H., Vandebroek, A., Deleu, I., Vergauwe, P., Rezaei Kalantari, H., D'Haens, G., Paesmans, M., Peeters, M., Efira, A. and Humblet, Y. (2012) A phase II randomized study of combined infusional leucovorin sodium and 5- FU versus the leucovorin calcium followed by 5-FU both in combination with irinotecan or oxaliplatin in patients with metastatic colorectal cancer. Acta Gastroenterol. Belg. 75, 14-21.
4 Bulzomi, P., Bolli, A., Galluzzo, P., Acconcia, F., Ascenzi, P. and Marino, M. (2012) The naringenin-induced proapoptotic effect in breast cancer cell lines holds out against a high bisphenol a background. IUBMB Life 64, 690-696.   DOI
5 Cai, Y., Zhang, C., Nawa, T., Aso, T., Tanaka, M., Oshiro, S., Ichijo, H. and Kitajima, S. (2000) Homocysteine-responsive ATF3 gene expression in human vascular endothelial cells: activation of c-Jun NH(2)-terminal kinase and promoter response element. Blood 96, 2140-2148.
6 Ekambaram, G., Rajendran, P., Magesh, V. and Sakthisekaran, D. (2008) Naringenin reduces tumor size and weight lost in N-methyl- N'-nitro-N-nitrosoguanidine-induced gastric carcinogenesis in rats. Nutr. Res. 28, 106-112.   DOI
7 Esmaeili, M. A. and Alilou, M. (2014) Naringenin attenuates CCl induced hepatic inflammation by the activation of Nrf2 mediated pathway in rats. Clin. Exp. Pharmacol. Physiol. 41, 416-422.   DOI
8 Ganapathy, E., Peramaiyan, R., Rajasekaran, D., Venkataraman, M. and Dhanapal, S. (2008) Modulatory effect of naringenin on Nmethyl- N'-nitro-N-nitrosoguanidine- and saturated sodium chloride- induced gastric carcinogenesis in male Wistar rats. Clin. Exp. Pharmacol. Physiol. 35, 1190-1196.   DOI
9 Garcia-Lafuente, A., Guillamon, E., Villares, A., Rostagno, M. A. and Martinez, J. A. (2009) Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm. Res. 58, 537-552.   DOI
10 Hai, T. and Hartman, M. G. (2001) The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 273, 1-11.   DOI
11 Hai, T., Wolfgang, C. D., Marsee, D. K., Allen, A. E. and Sivaprasad, U. (1999) ATF3 and stress responses. Gene Expr. 7, 321-335.
12 Kanno, S., Tomizawa, A., Ohtake, T., Koiwai, K., Ujibe, M. and Ishikawa, M. (2006) Naringenin-induced apoptosis via activation of NF-kappaB and necrosis involving the loss of ATP in human promyeloleukemia HL-60 cells. Toxicol. Lett. 166, 131-139.   DOI
13 Kim, K. J., Lee, J., Park, Y. and Lee, S. H. (2015) ATF3 Mediates Anti-Cancer Activity of Trans-10, cis-12-Conjugated Linoleic Acid in Human Colon Cancer Cells. Biomol. Ther. 23, 134-140.   DOI
14 Lee, S. H., Kim, J. S., Yamaguchi, K., Eling, T. E. and Baek, S. J. (2005b) Indole-3-carbinol and 3,3'-diindolylmethane induce expression of NAG-1 in a p53-independent manner. Biochem. Biophys. Res. Commun. 328, 63-69.   DOI
15 Kuo, S. M. (1997) Dietary flavonoid and cancer prevention: evidence and potential mechanism. Crit. Rev. Oncog. 8, 47-69.   DOI
16 Lee, J. H., Park, C. H., Jung, K. C., Rhee, H. S. and Yang, C. H. (2005a). Negative regulation of beta-catenin/Tcf signaling by naringenin in AGS gastric cancer cell. Biochem. Biophys. Res. Commun. 335, 771-776.   DOI
17 Lee, S. H., Bahn, J. H., Whitlock, N. C. and Baek, S. J. (2010) Activating transcription factor 2 (ATF2) controls tolfenamic acid-induced ATF3 expression via MAP kinase pathways. Oncogene 29, 5182-5192.   DOI
18 Lee, S. H., Min, K. W., Zhang, X. and Baek, S. J. (2013) 3,3'-diindolylmethane induces activating transcription factor 3 (ATF3) via ATF4 in human colorectal cancer cells. J. Nutr. Biochem. 24, 664-671.   DOI
19 Lee, S. H., Yamaguchi, K., Kim, J. S., Eling, T. E., Safe, S., Park, Y. and Baek, S. J. (2006) Conjugated linoleic acid stimulates an antitumorigenic protein NAG-1 in an isomer specific manner. Carcinogenesis 27, 972-981.   DOI
20 Lu, D., Chen, J. and Hai, T. (2006a) The regulation of ATF3 gene expression by mitogen-activated protein kinases. Biochem. J. 401, 559-567.
21 Lu, D., Wolfgang, C. D. and Hai, T. (2006b) Activating transcription factor 3, a stress-inducible gene, suppresses Ras-stimulated tumorigenesis. J. Biol. Chem. 281, 10473-10481   DOI
22 Newman, D. J., Cragg, G. M., Holbeck, S. and Sausville, E. A. (2002) Natural products and derivatives as leads to cell cycle pathway targets in cancer chemotherapy. Curr. Cancer Drug Targets 2, 279-308.   DOI
23 Siegel, R., Ma, J., Zou, Z. and Jemal, A. (2014) Cancer statistics, 2014. CA Cancer J. Clin. 64, 9-29.   DOI
24 Pan, M. H., Ghai, G. and Ho, C.T. (2008) Food bioactives, apoptosis, and cancer. Mol. Nutr. Food Res. 52, 43-52.   DOI
25 Pan, M. H. and Ho, C. T. (2008) Chemopreventive effects of natural dietary compounds on cancer development. Chem. Soc. Rev. 37, 2558-2574.   DOI
26 Pietta, P. G. (2000) Flavonoids as antioxidants. J. Nat. Prod. 63, 1035-1042.   DOI
27 Song, H. M., Park, G. H., Eo, H. J., Lee, J. W., Kim, M. K., Lee, J. R., Lee, M. H., Koo, J. S. and Jeong, J. B. (2015) Anti-Proliferative Effect of Naringenin through p38-Dependent Downregulation of Cyclin D1 in Human Colorectal Cancer Cells. Biomol. Ther. 23, 339-344.   DOI
28 Totta, P., Acconcia, F., Leone, S., Cardillo, I. and Marino, M. (2004) Mechanisms of naringenin-induced apoptotic cascade in cancer cells: involvement of estrogen receptor alpha and beta signalling. IUBMB Life 56, 491-499.   DOI
29 Virgili, F., Acconcia, F., Ambra, R., Rinna, A., Totta, P. and Marino, M. (2004) Nutritional flavonoids modulate estrogen receptor alpha signaling. IUBMB Life 56, 145-151.   DOI
30 Wang, H., Khor, T. O., Shu, L., Su, Z. Y., Fuentes, F., Lee, J. H. and Kong, A. N. (2012) Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med. Chem. 12, 1281-1305.   DOI
31 Wang, H., Mo, P., Ren, S. and Yan C. (2010) Activating transcription factor 3 activates p53 by preventing E6-associated protein from binding to E6. J. Biol. Chem. 285, 13201-13210.   DOI
32 Yen, H. R., Liu, C. J. and Yeh, C. C. (2015) Naringenin suppresses TPA-induced tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Chem. Biol. Interact. 235, 1-9.   DOI
33 Yamaguchi, K., Lee, S. H., Kim, J. S., Wimalasena, J., Kitajima, S. and Baek, S. J. (2006) Activating transcription factor 3 and early growth response 1 are the novel targets of LY294002 in a phosphatidylinositol 3-kinase-independent pathway. Cancer Res. 66, 2376-2384.   DOI
34 Yan, C., Lu, D., Hai, T. Boyd, D. D. (2005) Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBO J. 24, 2425-2435.   DOI
35 Yeh, C. C., Yang, J. I., Lee, J. C., Tseng, C. N., Chan, Y. C., Hseu, Y. C., Tang, J. Y., Chuang, L. Y., Huang, H. W., Chang, F. R. and Chang, H. W. (2012) Anti-proliferative effect of methanolic extract of Gracilaria tenuistipitata on oral cancer cells involves apoptosis, DNA damage, and oxidative stress. BMC Complement. Altern. Med. 12, 142.   DOI
36 Yin, T., Sandhu, G., Wolfgang, C. D., Burrier, A., Webb, R. L., Rigel, D. F., Hai, T. and Whelan, J. (1997) Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J. Biol. Chem. 272, 19943-19950.   DOI
37 Yoon, H., Kim, T. W., Shin, S. Y., Park, M. J., Yong, Y., Kim, D. W., Islam, T., Lee, Y. H., Jung, K. Y. and Lim, Y. (2013) Design, synthesis and inhibitory activities of naringenin derivatives on human colon cancer cells. Bioorg. Med. Chem. Lett. 23, 232-238.   DOI