DOI QR코드

DOI QR Code

Artificial Neural Network-based Real Time Water Temperature Prediction in the Soyang River

인공신경망 기반 실시간 소양강 수온 예측

  • Jeong, Karpjoo (Dept. of Internet Engineering, Konkuk Univerity) ;
  • Lee, Jonghyun (Dept. of Internet Engineering, Konkuk Univerity) ;
  • Lee, Keun Young (Institute for Ubiquitous Information Technology and Applications, Konkuk University) ;
  • Kim, Bomchul (Dept. of Environmental Engineering, Kangwon University)
  • Received : 2016.10.31
  • Accepted : 2016.11.07
  • Published : 2016.12.01

Abstract

It is crucial to predict water temperature for aquatic ecosystem studies and management. In this paper, we first address challenging issues in predicting water temperature in a real time manner and propose a distributed computing model to address such issues. Then, we present an Artificial Neural Network (ANN)-based water temperature prediction model developed for the Soyang River and a cyberinfrastructure system called WT-Agabus to run such prediction models in an automated and real time manner. The ANN model is designed to use only weather forecast data (air temperature and rainfall) that can be obtained by invoking the weather forecasting system at Korea Meteorological Administration (KMA) and therefore can facilitate the automated and real time water temperature prediction. This paper also demonstrates how easily and efficiently the real time prediction can be implemented with the WT-Agabus prototype system.

Keywords

References

  1. Jorgensen, Sven Erik, Tae Soo Chon, and Friedrich Recknagel. Handbook of ecological modelling and informatics. Wit Press, 2009.
  2. Tarnpradab, S. et al., 2014. Neural networks for prediction of stream flow based on snow accumulation. CIES, pp. 88-94.
  3. Krajewski, W.F., Kraszewski, A.K. & Grenney, W.J., 1982. A graphical technique for river water temperature predictions. Ecological Modelling, 17(3-4), p. 209-224. https://doi.org/10.1016/0304-3800(82)90032-1
  4. Caissie, D., Satish, M.G. & El-Jabi, N., 2007. Predicting water temperatures using a deterministic model: Application on Miramichi River catchments (New Brunswick, Canada). Journal of Hydrology, 336(3-4), p. 303-315. https://doi.org/10.1016/j.jhydrol.2007.01.008
  5. Sahoo, G.B., Schladow, S.G. & Reuter, J.E., 2009. Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models. Journal of Hydrology, 378(3-4), p. 325-342. https://doi.org/10.1016/j.jhydrol.2009.09.037
  6. Mackey, A.P. & Berrie, A.D., 1991. The prediction of water temperatures in chalk streams from air temperatures. Hydrobiologia, 210(3), p.183-189. https://doi.org/10.1007/BF00034676
  7. Mohseni, O., & Stefan, H. G, 1999. Stream temperature/air temperature relationship: a physical interpretation. Journal of Hydrology, 218(3), 128-141. https://doi.org/10.1016/S0022-1694(99)00034-7
  8. Ozaki, N. et al., 2003. Statistical analyses on the effects of air temperature fluctuations on river water qualities. Hydrological Processes, 17(14), p. 2837-2853. https://doi.org/10.1002/hyp.1437
  9. Kinouchi, T., Yagi, H. & Miyamoto, M., 2007. Increase in stream temperature related to anthropogenic heat input from urban wastewater. Journal of Hydrology, 335(1-2), p. 78-88. https://doi.org/10.1016/j.jhydrol.2006.11.002
  10. Lowney, C. L., 2000. Stream temperature variation in regulated rivers: Evidence for a spatial pattern in daily minimum and maximum magnitudes. Water Resources Research, 36(10), p.2947. https://doi.org/10.1029/2000WR900142
  11. Bogan, T. et al., 2006. Estimating extreme stream temperatures by the standard deviate method. Journal of Hydrology, 317(3-4), p.173-189. https://doi.org/10.1016/j.jhydrol.2005.05.016
  12. Edinger, J.E., Duttweiler, D.W. & Geyer, J.C., 1968. The Response of Water Temperatures to Meteorological Conditions. Water Resources Research, 4(5), p. 1137. https://doi.org/10.1029/WR004i005p01137
  13. O'Driscoll, M. A. & DeWalle, D. R., 2006. Stream-air temperature relations to classify stream-ground water interactions in a karst setting, central Pennsylvania, USA. Journal of Hydrology, 329(1-2), p. 140-153. https://doi.org/10.1016/j.jhydrol.2006.02.010
  14. Cui, Z., Jiang, M., Jeong, K., & Kim, B. 2014, May. A Cloud Database Service Approach to the Management of Sensor Data. In 2014 International Conference on Information Science and Applications (ICISA). IEEE, 2014. p. 1-4.
  15. Joe, W., Lee, J., & Jeong, K. 2015. CSN: The Conceptually Manageable Sensor Network. International Journal of Distributed Sensor Networks, 2015.
  16. Jiang, Meilan, et al. "A Data Stream-Based, Integrative Approach to Reliable and Easily Manageable Real Time Environmental Monitoring." International Journal of Distributed Sensor Networks, 2015
  17. Lee, Jonghyun et al., 2015. "A Cyberinfra-structurebased Approach to Real Time Water Temperature Prediction.", (online) Available: https://arxiv.org/abs/1509.07616
  18. P.J Diggle, 1990. Time Series. A Biostatistical Introduction, Oxford Science Publications, Oxford.
  19. Chatfield, C., 2003. The analysis of time series: an introduction. Chapman &Hall/CRC, London.
  20. Janssen, P.H.M. & Heuberger, P.S.C., 1995. Calibration of process-oriented models. Ecological Modelling, 83(1-2), p.55-66. https://doi.org/10.1016/0304-3800(95)00084-9
  21. Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models, Part I - A discussion of principles, J. Hydrol., 10, 282-290, 1970. https://doi.org/10.1016/0022-1694(70)90255-6
  22. Bishop, C.M., 1995. Neural Networks for Pattern Recognition, CLARENDONPRESS OXFORD.
  23. Duda, R.O., Hart, P.E. & Stork, D.G., 2000. Pattern Classification, JOHN WlLEY & SONS, INC.
  24. Hastie, T., Tibshirani, R. & Friedman, J., 2001. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer.
  25. Kubat, M., 1999. Neural networks: a comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7. The Knowledge Engineering Review, 13(4), p.409-412.
  26. Song K, Park YS, Zheng F, Kang H, 2013. The application of artificialneural network (ANN) model to the simulation of denitrificationrates in mesocosm-scale wetlands. Ecol Inform 16:10-16 https://doi.org/10.1016/j.ecoinf.2013.04.002
  27. Kamburugamuve, S., Fox, G., Leake, D., & Qiu, J, 2013. Survey of distributed stream processing for large stream sources. Technical report. 2013.
  28. EsperTech. "Esper", (online) Available: http://www.espertech.com/products/esper.php
  29. Winslow, L.A. et al., 2008. Vega: A Flexible Data Model for Environmental Time Series Data. In Ecological Information Management Conference. pp. 166-171.
  30. GLEON, (online) Available: http://www.gleon.org
  31. Tadeusiewicz, R., 1995. Neural networks: A comprehensive foundation. Control Engineering Practice, 3(5), p.746-747. https://doi.org/10.1016/0967-0661(95)90080-2
  32. Schuster-Bockler, B. & Bateman, A., 2007. An introduction to hidden Markov models. Current protocols in bioinformatics / editoral board, Andreas D. Baxevanis [et al.], Appendix 3, p. Appendix 3A.
  33. Whitley, D., 1994. A genetic algorithm tutorial. Statistics and Computing, 4(2), p. 65-85. https://doi.org/10.1007/BF00175354
  34. Stonebraker, M., Cetintemel, U. & Zdonik, S.B., 2005. The 8 requirements of real-time stream processing. SIGMOD Record, 34(4), pp. 42-47 https://doi.org/10.1145/1107499.1107504
  35. Abadi, D. J. et al., 2004. An Integration Framework for Sensor Networks and Data Stream Management Systems. VLDB, pp. 1361-1364.
  36. Voorsluys, W., Broberg, J. & Buyya, R., 2011. Introduction to Cloud Computing. Cloud Computing: Principles and Paradigms, p. 1-41.
  37. Hamdaqa, M. & Tahvildari, L., 2012. Cloud Computing Uncovered: A Research Landscape. Advances in Computers, 86, p. 41-85. https://doi.org/10.1016/B978-0-12-396535-6.00002-8