References
- Jorgensen, Sven Erik, Tae Soo Chon, and Friedrich Recknagel. Handbook of ecological modelling and informatics. Wit Press, 2009.
- Tarnpradab, S. et al., 2014. Neural networks for prediction of stream flow based on snow accumulation. CIES, pp. 88-94.
- Krajewski, W.F., Kraszewski, A.K. & Grenney, W.J., 1982. A graphical technique for river water temperature predictions. Ecological Modelling, 17(3-4), p. 209-224. https://doi.org/10.1016/0304-3800(82)90032-1
- Caissie, D., Satish, M.G. & El-Jabi, N., 2007. Predicting water temperatures using a deterministic model: Application on Miramichi River catchments (New Brunswick, Canada). Journal of Hydrology, 336(3-4), p. 303-315. https://doi.org/10.1016/j.jhydrol.2007.01.008
- Sahoo, G.B., Schladow, S.G. & Reuter, J.E., 2009. Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models. Journal of Hydrology, 378(3-4), p. 325-342. https://doi.org/10.1016/j.jhydrol.2009.09.037
- Mackey, A.P. & Berrie, A.D., 1991. The prediction of water temperatures in chalk streams from air temperatures. Hydrobiologia, 210(3), p.183-189. https://doi.org/10.1007/BF00034676
- Mohseni, O., & Stefan, H. G, 1999. Stream temperature/air temperature relationship: a physical interpretation. Journal of Hydrology, 218(3), 128-141. https://doi.org/10.1016/S0022-1694(99)00034-7
- Ozaki, N. et al., 2003. Statistical analyses on the effects of air temperature fluctuations on river water qualities. Hydrological Processes, 17(14), p. 2837-2853. https://doi.org/10.1002/hyp.1437
- Kinouchi, T., Yagi, H. & Miyamoto, M., 2007. Increase in stream temperature related to anthropogenic heat input from urban wastewater. Journal of Hydrology, 335(1-2), p. 78-88. https://doi.org/10.1016/j.jhydrol.2006.11.002
- Lowney, C. L., 2000. Stream temperature variation in regulated rivers: Evidence for a spatial pattern in daily minimum and maximum magnitudes. Water Resources Research, 36(10), p.2947. https://doi.org/10.1029/2000WR900142
- Bogan, T. et al., 2006. Estimating extreme stream temperatures by the standard deviate method. Journal of Hydrology, 317(3-4), p.173-189. https://doi.org/10.1016/j.jhydrol.2005.05.016
- Edinger, J.E., Duttweiler, D.W. & Geyer, J.C., 1968. The Response of Water Temperatures to Meteorological Conditions. Water Resources Research, 4(5), p. 1137. https://doi.org/10.1029/WR004i005p01137
- O'Driscoll, M. A. & DeWalle, D. R., 2006. Stream-air temperature relations to classify stream-ground water interactions in a karst setting, central Pennsylvania, USA. Journal of Hydrology, 329(1-2), p. 140-153. https://doi.org/10.1016/j.jhydrol.2006.02.010
- Cui, Z., Jiang, M., Jeong, K., & Kim, B. 2014, May. A Cloud Database Service Approach to the Management of Sensor Data. In 2014 International Conference on Information Science and Applications (ICISA). IEEE, 2014. p. 1-4.
- Joe, W., Lee, J., & Jeong, K. 2015. CSN: The Conceptually Manageable Sensor Network. International Journal of Distributed Sensor Networks, 2015.
- Jiang, Meilan, et al. "A Data Stream-Based, Integrative Approach to Reliable and Easily Manageable Real Time Environmental Monitoring." International Journal of Distributed Sensor Networks, 2015
- Lee, Jonghyun et al., 2015. "A Cyberinfra-structurebased Approach to Real Time Water Temperature Prediction.", (online) Available: https://arxiv.org/abs/1509.07616
- P.J Diggle, 1990. Time Series. A Biostatistical Introduction, Oxford Science Publications, Oxford.
- Chatfield, C., 2003. The analysis of time series: an introduction. Chapman &Hall/CRC, London.
- Janssen, P.H.M. & Heuberger, P.S.C., 1995. Calibration of process-oriented models. Ecological Modelling, 83(1-2), p.55-66. https://doi.org/10.1016/0304-3800(95)00084-9
- Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models, Part I - A discussion of principles, J. Hydrol., 10, 282-290, 1970. https://doi.org/10.1016/0022-1694(70)90255-6
- Bishop, C.M., 1995. Neural Networks for Pattern Recognition, CLARENDONPRESS OXFORD.
- Duda, R.O., Hart, P.E. & Stork, D.G., 2000. Pattern Classification, JOHN WlLEY & SONS, INC.
- Hastie, T., Tibshirani, R. & Friedman, J., 2001. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer.
- Kubat, M., 1999. Neural networks: a comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7. The Knowledge Engineering Review, 13(4), p.409-412.
- Song K, Park YS, Zheng F, Kang H, 2013. The application of artificialneural network (ANN) model to the simulation of denitrificationrates in mesocosm-scale wetlands. Ecol Inform 16:10-16 https://doi.org/10.1016/j.ecoinf.2013.04.002
- Kamburugamuve, S., Fox, G., Leake, D., & Qiu, J, 2013. Survey of distributed stream processing for large stream sources. Technical report. 2013.
- EsperTech. "Esper", (online) Available: http://www.espertech.com/products/esper.php
- Winslow, L.A. et al., 2008. Vega: A Flexible Data Model for Environmental Time Series Data. In Ecological Information Management Conference. pp. 166-171.
- GLEON, (online) Available: http://www.gleon.org
- Tadeusiewicz, R., 1995. Neural networks: A comprehensive foundation. Control Engineering Practice, 3(5), p.746-747. https://doi.org/10.1016/0967-0661(95)90080-2
- Schuster-Bockler, B. & Bateman, A., 2007. An introduction to hidden Markov models. Current protocols in bioinformatics / editoral board, Andreas D. Baxevanis [et al.], Appendix 3, p. Appendix 3A.
- Whitley, D., 1994. A genetic algorithm tutorial. Statistics and Computing, 4(2), p. 65-85. https://doi.org/10.1007/BF00175354
- Stonebraker, M., Cetintemel, U. & Zdonik, S.B., 2005. The 8 requirements of real-time stream processing. SIGMOD Record, 34(4), pp. 42-47 https://doi.org/10.1145/1107499.1107504
- Abadi, D. J. et al., 2004. An Integration Framework for Sensor Networks and Data Stream Management Systems. VLDB, pp. 1361-1364.
- Voorsluys, W., Broberg, J. & Buyya, R., 2011. Introduction to Cloud Computing. Cloud Computing: Principles and Paradigms, p. 1-41.
- Hamdaqa, M. & Tahvildari, L., 2012. Cloud Computing Uncovered: A Research Landscape. Advances in Computers, 86, p. 41-85. https://doi.org/10.1016/B978-0-12-396535-6.00002-8