DOI QR코드

DOI QR Code

Alterations of Hematological Parameters, Plasma Constituents and Antioxidant Responses in the Sablefish Anoplopoma fimbria Depending on Salinity

염분농도에 따른 치어기 은대구(Anoplopoma fimbria)의 혈액학적 성상, 혈장성분 및 항산화반응의 변화

  • Kim, Jun-Hwan (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Park, Hee-Ju (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Hwang, In-Ki (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kim, Do-Hyung (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Oh, Chul Woong (Department of Marine Biology, Pukyong National University) ;
  • Lee, Jung sick (Department of Aqualife Medicine, Chonnam National University) ;
  • Kang, Ju-Chan (Department of Aquatic Life Medicine, Pukyong National University)
  • 김준환 (부경대학교 수산생명의학과) ;
  • 박희주 (부경대학교 수산생명의학과) ;
  • 황인기 (부경대학교 수산생명의학과) ;
  • 김도형 (부경대학교 수산생명의학과) ;
  • 오철웅 (부경대학교 자원생물학과) ;
  • 이정식 (전남대학교 수산생명의학과) ;
  • 강주찬 (부경대학교 수산생명의학과)
  • Received : 2016.08.19
  • Accepted : 2016.10.19
  • Published : 2016.12.31

Abstract

Juvenile Anoplopoma fimbria (mean length $15.6{\pm}1.4cm$, mean weight $68.7{\pm}4.3g$) were exposed to 4 months with the different levels of salinity [100 (35.0), 90 (31.5), 80 (28.0), 70 (24.5), 60 (21.0), 50 (17.5), and 40 (14.0) % (psu)] for 4 months. Hematological parameters such as red blood cell (RBC) counts, hematocrit (Ht), and hemoglobin (Hb) concentrations were substantially decreased under salinities of 50% psu or lower. Of the measured inorganic plasma constituents, magnesium was notably decreased, whereas there was no effect on calcium. Among organic plasma components, glucose and cholesterol were significantly increased, and total protein was decreased. Among enzyme plasma components, glutamic oxalate transaminase (GOT), glutamic pyruvate transaminase (GPT), and alkaline phosphatase (ALP) were significantly increased under salinities of 50% psu or lower. Antioxidant responses such as glutathione S-transferase (GST) and glutathione (GSH) were significantly decreased at salinities of 50% psu or lower. The results of this study indicate that salinity affects the blood parameters, plasma constituents, and antioxidant responses of A. fimbria.

Keywords

References

  1. Allain CC, Poon LS, Chan CS, Richmond WFPC and Fu PC. 1974. Enzymatic determination of total serum cholesterol. Clinical Chem 20, 470-475.
  2. Arnason T, Magnadottir B, Bjornsson B, Steinarsson A and Bjornsson BT. 2013. Effects of salinity and temperature on growth, plasma ions, cortisol and immune parameters of juvenile Atlantic cod (Gadus morhua). Aquaculture 380-383, 70-79. http://dx.doi.org/10.1016/j.aquaculture.2012.11.036.
  3. Azim W, Parveen S and Parveen S. 2002. Comparison of photometric cyanmethemoglobin and automated methods for hemoglobin estimation. J Ayub Med Coll Abbottabad 14, 22-3.
  4. Bolton JP, Collie NL, Kawauchi H and Hirano T. 1987. Osmoregulatory actions of growth hormone in rainbow trout (Salmo gairdneri). J Endocrinol 112, 63-68. https://doi.org/10.1677/joe.0.1120063
  5. Bijvelds MJ, Velden JA, Kolar ZI and Flik G. 1998. Magnesium transport in fresh-water teleosts. J Exp Biol 201, 1981-1990.
  6. Cailleaud K, Maillet G, Budzinski H, Souissi S and Forget-Leray J. 2007. Effects of salinity and temperature on the expression of enzymatic biomarkers in Eurytemora affinis (Calanoida, Copepoda). Comp Biochem Physiol A 147, 841-849. http://dx.doi.org/10.1016/j.cbpa.2006.09.012.
  7. Chang YJ and Hur JW. 1999. Physiological responses of grey mullet, Mugil cephalus and Nile tilapia Oreochromis niloticus by rapid changes in salinity of rearing water. Fish Aquatic Sci 32, 310-316.
  8. Connerty HV and Briggs AR. 1966. Determination of serum calcium by means of orthocresolphthalein complexone. American J Clinical Pathol 45, 290-296. https://doi.org/10.1093/ajcp/45.3.290
  9. Denson MR, Stuart KR and Smith TIJ. 2003. Effects of salinity on growth, survival, and selected hematological parameters of juvenile cobia Rachycentron canadum. J World Aquac Soc 34, 496-504. http://dx.doi.org/10.1111/j.1749-7345.2003.tb00088.x.
  10. Donham RT, Morin D and Tjeerdema RS. 2006. Salinity effects on activity and expression of glutathione S-transferases in white sturgeon and Chinook salmon. Ecotoxicol Environ Saf 63, 293-298. http://dx.doi.org/10.1016/j.ecoenv.2005.01.007.
  11. Fazio F, Marafioti S, Arfuso F, Piccione G and Faggio C. 2013. Influence of different salinity on haematological and biochemical parameters of the widely cultured mullet, Mugil cephalus. Mar Freshw Behav Physiol 46, 211-218. http://dx.doi.org/10.1080/10236244.2013.817728.
  12. Hollands M and Logan JE. 1966. An examination of commercial kits for the determination of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) in serum. Canadian Medical Association J 95, 303.
  13. Imsland AK, Gustavsson A, Gunnarsson S, Foss A, Arnason J, Arnarson I, Jonsson A F, Smaradottir H and Thorarensen H. 2008. Effects of reduced salinities on growth, feed conversion efficiency and blood physiology of juvenile Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 274, 254-259. http://dx.doi.org/10.1016/j.aquaculture.2007.11.021.
  14. Javed M and Usmani N. 2015. Stress response of biomolecules (carbohydrate, protein and lipid profiles) in fish Channa punctatus inhabiting river polluted by Thermal Power Plant effluent. Saudi J Biol Sci 22, 237-242. http://dx.doi.org/10.1016/j.sjbs.2014.09.021.
  15. Joseph A and Philip R. 2007. Acute salinity stress alters the haemolymph metabolic profile of Penaeus monodon and reduces immunocompetence to white spot syndrome virus infection. Aquaculture 272, 87-97. http://dx.doi.org/10.1016/j.aquaculture.2007.08.047.
  16. Kannan MB, Yamamoto A and Khakbaz H. 2015. Influence of living cells (L929) on the biodegradation of magnesium-calcium alloy. Colloids and Surfaces B: Biointerfaces 126, 603-606. http://dx.doi.org/10.1016/j.colsurfb.2015.01.015.
  17. Kim JH and Kang JC. 2014. The selenium accumulation and its effect on growth, and haematological parameters in red sea bream, Pagrus major, exposed to waterborne selenium. Ecotoxicol Environ Saf 104, 96-102. http://dx.doi.org/10.1016/j.ecoenv.2014.02.010.
  18. Kim JH and Kang JC. 2015. The lead accumulation and hematological findings in juvenile rock fish Sebastes schlegelii exposed to the dietary lead (II) concentrations. Ecotoxicol Environ Saf 115, 33-39. http://dx.doi.org/10.1016/j.ecoenv.2015.02.009.
  19. Kim JH and Kang JC. 2016a. Oxidative stress, neurotoxicity, and metallothionein (MT) gene expression in juvenile rock fish Sebastes schlegelii under the different levels of dietary chromium (Cr6+) exposure. Ecotoxicol Environ Saf 125, 78-84. http://dx.doi.org/10.1016/j.ecoenv.2015.12.001.
  20. Kim JH and Kang JC. 2016b. The chromium accumulation and its physiological effects in juvenile rockfish, Sebastes schlegelii, exposed to different levels of dietary chromium ($Cr^{6+}$) concentrations. Environ Toxicol Pharmacol 41, 152-158. http://dx.doi.org/10.1016/j.etap.2015.12.001.
  21. Kim MJ, Chung SC and Song CB. 2004. Effect of salinity on growth and survival of olive flounder, Paralichthys olivaceus. Korean J Ichthyol 16, 100-106.
  22. Kim YS, Do YH, Min BH, Lim HK, Lee BK and Chang YJ. 2009. Physiological responses of starry flounder Platichthys stellatus during freshwater acclimation with different speeds in salinity change. Aquaculture 22, 28-33.
  23. King RN and King ET. 1954. Estimation of plasma phosphatase by determination of hydrolyzed with amino antipyrene. J Clinical Pathol 7, 332-338.
  24. Lau PS, Wong HL and Carrigues Ph. 2004. Seasonal variation in antioxidative responses and acetylcholinesterase activity in Perna viridis in eastern oceanic and western estuarine waters of Hong Kong. Cont Shelf Res 24, 1969-1987. http://dx.doi.org/10.1016/j.csr.2004.06.019.
  25. Lee BK and Huh MK. 2004. Effects of Varying Salinity on the Growth and Hematological Response of Juvenile Pufferfish, Takifugu obscurus. Korean J Ichthyol 16, 254-260.
  26. Lubran MM. 1978. The measurement of total serum proteins by the Biuret method. Annals Clinical Laboratory Sci 8, 106-110.
  27. Lushchak VI. 2011. Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101, 13-30. http://dx.doi.org/10.1016/j.aquatox.2010.10.006.
  28. McCormick SD. 2001. Endocrine control of osmoregulation in teleost fish. American zoologist 41, 781-794. http://dx.doi.org/10.1093/icb/41.4.781.
  29. Oh SY, Kim CK, Jang YS, Choi HJ and Myoung JG. 2014. Effect of salinity on survival, oxygen consumption and blood physiology of Korean rockfish Sebastes schlegelii. Ocean Polar Res 36, 135-143. http://dx.doi.org/10.4217/OPR.2014.36.2.135.
  30. Oner M, Atli G and Canli M. 2008. Changes in serum biochemical parameters of freshwater fish Oreochromis niloticus following prolonged metal (Ag, Cd, Cr, Cu, Zn) exposures. Environ Toxicol Chem 27, 360-366. http://dx.doi.org/10.1897/07-281R.1.
  31. Panfili J, Thior D, Ecoutin JM, Ndiaye P and Albaret JJ. 2006. Influence of salinity on the size at maturity for fish species reproducing in contrasting West African estuaries. J Fish Biol 69, 95-113. http://dx.doi.org/10.1111/j.1095-8649.2006.01069.x.
  32. Partridge GJ and Jenkins GI. 2002. The effect of salinity on growth and survival of juvenile black bream (Acanthopagrus butcheri). Aquaculture 210, 219-230. http://dx.doi.org/10.1016/S0044-8486(01)00817-1.
  33. Raabo BE and Terkildsen TC. 1960. On the enzymatic determination of blood glucose. Scandinavian J Clinic Laborat Investig 12, 402-407. http://dx.doi.org/10.3109/00365516009065404.
  34. Regoli F and Principato G. 1995. Glutathione, glutathionedependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: implications for the use of biochemical biomarkers. Aquat Toxicol 31, 143-164. http://dx.doi.org/10.1016/0166-445x(94)00064-W.
  35. Roche H and Boge G. 1996. Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication. Mar Environ Res 41, 27-43. http://dx.doi.org/10.1016/0141-1136(95)00015-1.
  36. Ruiz JM and Blumwald E. 2002. Salinity-induced glutathione synthesis in Brassica napus. Planta 214, 965-969. http://dx.doi.org/10.1007/s00425-002-0748-y.
  37. Saoud IP, Kreydiyyeh S, Chalfoun A and Fakih M. 2007. Influence of salinity on survival, growth, plasma osmolality and gill Na+-K+-ATPase activity in the rabbitfish Siganus rivulatus. J Exp Mar Bio Ecol 348, 183-190. http://dx.doi.org/10.1016/j.jembe.2007.05.005.
  38. Sclafani M, Taggart CT and Thompson KR. 1993. Condition, buoyancy and the distribution of larval fish: implications for vertical migration and retention. J Plankton Res 15, 413-435. http://dx.doi.org/10.1093/plankt/15.4.413.
  39. Shirangi SA, Kalbassi MR, Khodabandeh S, Jafarian H, Lorin-Nebel C, Farcy E and Lignot JH. 2016. Salinity effects on osmoregulation and gill morphology in juvenile Persian sturgeon (Acipenser persicus). Fish Physiol Biochem 1-14. http://dx.doi.org/10.1007/s10695-016-0254-y.
  40. Tavares-Dias M, Schalch SHC, Martins ML, Onaka EM and Moraes FR. 2000. Hematological characteristics of Brazilian Teleosts. III. Parameters of the hybrid tambacu(Piaractus mesopotamicus $\times$ Colossoma macropomum Cuvier) (Osteichthyes, Characidae). Revista Bras Zool 17, 899-906. http://dx.doi.org/10.1590/S0101-81752000000400002.
  41. Tsuzuki MY, Ogawa K, Strussmann CA, Maita M and Takashima F. 2001. Physiological responses during stress and subsequent recovery at different salinities in adult pejerrey Odontesthes bonariensis. Aquaculture 200, 349-362. http://dx.doi.org/10.1016/S0044-8486(00)00573-1.
  42. Webb NA and Wood CM. 2000. Bioaccumulation and distribution of silver in four marine teleosts and two marine elasmobranchs: influence of exposure duration, concentration, and salinity. Aquat Toxicol 49, 111-129. http://dx.doi.org/10.1016/S0166-445X(99)00063-6.
  43. Wickes MA and Morgan RP. 1976. Effects of salinity on three enzymes involved in amino acid metabolism from the American oyster, Crassostrea virginica. Comp Biochem Physiol B 53, 339-343. http://dx.doi.org/10.1016/0305-0491(76)90338-2.
  44. Xiu-mei WXJZ and Wen-tao LI. 2005. Effects of salinity on the non-specific immuno-enzymetic activity of Sebastes schlegeli [J]. Mar Fish Res 6, 004.
  45. Yin F, Peng S, Sun P and Shi Z. 2011. Effects of low salinity on antioxidant enzymes activities in kidney and muscle of juvenile silver pomfret Pampus argenteus. Acta Ecologica Sinica 31, 55-60. http://dx.doi.org/10.1016/j.chnaes.2010.11.009.
  46. Zarejabad AM, Jalali MA, Sudagar M and Pouralimotlagh S. 2010. Hematology of great sturgeon (Huso huso Linnaeus, 1758) juvenile exposed to brackish water environment. Fish Physiol Biochem 36, 655-659. http://dx.doi.org/10.1007/s10695-009-9339-1.

Cited by

  1. Effects of Exposure to Hexavalent Chromium on Hematological Parameters and Plasma Components in Flatfish, Paralichthys olivaceus vol.36, pp.2, 2018, https://doi.org/10.11626/KJEB.2018.36.2.124