DOI QR코드

DOI QR Code

이미지 분석을 활용한 합성수지 혼입 모르타르의 특성 및 미세구조 분석

Microstructure and Properties of Mortar Containing Synthetic Resin using Image Analysis

  • 이빛나 (한국건설기술연구원 구조융합연구소) ;
  • 민지영 (한국건설기술연구원 구조융합연구소) ;
  • 이종석 (한국건설기술연구원 구조융합연구소) ;
  • 이장화 (한국건설기술연구원 구조융합연구소)
  • Lee, Binna (Korea Institute of Civil Engineering and Building Construction Technology) ;
  • Min, Jiyoung (Korea Institute of Civil Engineering and Building Construction Technology) ;
  • Lee, Jong-Suk (Korea Institute of Civil Engineering and Building Construction Technology) ;
  • Lee, Jang-Hwa (Korea Institute of Civil Engineering and Building Construction Technology)
  • 투고 : 2015.07.13
  • 심사 : 2015.10.28
  • 발행 : 2016.02.29

초록

본 연구에서는 수소 함유량이 높아 중성자 차폐에 유리한 합성수지를 대상으로 중성자 차폐용 골재로서의 적용성 검토를 수행하였다. 사용된 합성수지는 고밀도 폴리에틸렌(HDPE), 폴리프로필렌(PP), 초고분자량 폴리에틸렌(UPE)으로 잔골재의 20%, 40%, 60%의 부피에 해당하는 양을 무게로 환산하여 배합하였다. 실험은 모르타르의 물리적 특성을 파악할 수 있는 플로우 테스트, 인장 및 압축강도 시험을 수행하였으며, 시험체 내부의 미세구조를 분석하기 위해 파단면의 이미지 분석, SEM 및 X-ray CT 촬영을 실시하였다. 합성수지를 혼입한 모르타르의 플로우의 값은 HDPE 및 PP는 증가하였지만 UPE의 경우 감소하였다. 반면 인장 및 압축강도의 경우 종류에 상관없이 전반적으로 강도가 감소하는 경향을 보였으며, 이미지 분석 결과, HDPE 및 PP를 혼입한 모르타르의 강도는 혼입량에 관계없이 파단면에서의 합성수지 비율에 영향을 받았으며, 모르타르 내의 시멘트 매트릭스와의 단락 및 재료의 불균등한 분포가 강도 저하에 영향을 미친 것으로 추정된다. 반면, 미분말 상태인 UPE는 혼입량이 증가함에 따라 내부 공극이 증가하였으며, 이러한 특징은 일정량 이하에서는 강도 저하가 미미하였으나 일정한 혼입률 이상, 특히 본 실험에서는 치환율이 60% 이상에서 급격한 강도 저하를 나타냈다.

Commercial synthetic resins with great amount of hydrogen atoms were investigated for neutron shielding aggregates. Total three types of resins were considered in this study: high density polyethylene (HDPE), polypropylene (PP), and ultra molecular weight polyethylene (UPE). When these resins replaced 20, 40, 60 vol% of fine aggregates, mechanical properties were first evaluated including compressive and tensile strengths, and then image/microstructure analyses such as cross-section analysis, SEM, and X-ray CT were performed. The results showed that the compressive and tensile strengths decreased with the increase of replacement ratio of HDPE and PP, which was found through image analysis that it was closely related to the distribution of resins at the failure surface of test specimens. The strength reduction of UPE was quite small compared to HDPE and PP but it abruptly increased when the replacement level exceeded 60 vol%. The results of microstructure analyses indicated that the replacement level significantly affected the amount of air void so that it is critical to determine the reasonable amount of UPE to make cementitous materials for neutron shielding.

키워드

참고문헌

  1. S. Popovics, Polymer-cement concretes for field construction, Proceedings, ASCE Vol.100, No.3, 1974, pp.469-487.
  2. Mun, K.-J., Song, H.-R., and Hyung, W.-G., "Properties of Polymer-Modified Mortar with Styrene-Butyl Acrylate and Styrene Butadiene Rubber", Polymer, Vol.32, No.6, 2008, pp.555-560.
  3. Korea Institute of Energy Technology Evaluation and Planning (KETEP), Development of epoxy nanocomposite based neutron shielding materials for spent fuel cask, Korea Atomic Energy Research Institute(KAERI), 2013.
  4. Ministry of Trade, Industry&Energy(MOTIE), Development of radiation shielding material using an ultra-fine boron dispersed polymer matrix, 2009.
  5. Cho, S.H., Do, J.B., Ro, S.G., and Do, C.H., "Fabrication and Characteristics of Resin - Type Neutron Shielding Materials for Spent Fuel Shipping Cask", Hwahak konghak, Vol.7, No.3, 1996, pp.597-604.
  6. Pyzik Aleksander, J., and Aksay Ilhan, A., "Processing of boron carbide-aluminum composites", Journal of the amerian ceramic society, Vol.72, 1989, pp.775-780. https://doi.org/10.1111/j.1151-2916.1989.tb06216.x
  7. Rack, H. J., Dupree, S. A., Smugeresky, J. F., and Stark, A. H., "Development of Boron Carbide-Copper Cermets", Sandia National Laboratories Report SAND-78-2317, 1979.
  8. Sato, S., Maegawa, T., Yoshimatsu, K. Sato, K., Nonaka, A., Takakura, K., Ochiai, K., and Konno, C., "Development of a low activation concrete shielding wall by multi-layered structure for a fusion reactor", Journal of Nuclear Materials, Vol.417, No.1-3, 2011, pp.1131-1134. https://doi.org/10.1016/j.jnucmat.2010.12.302
  9. Cho, S.-H., Kim, I.S., Do, J.B., Ro, S.-G., and Park, H.S. "Fabrication and Characteristics of Modified and Hydrogenated Bisphenol-A type Epoxy Resin Based Neutron Shielding Materials", Hwahak konghak, Vol.35, No.5 1997, pp.661-666.
  10. Jun, J.H., Kim, J.W., Bae, Y.J., and Seo, Y.S. "Enhancement of dispersion and adhesion of B4C particles in epoxy resin using direct ultrasonic excitation", Journal of Nuclear Materials, Vol.416, 2011, pp.293-297. https://doi.org/10.1016/j.jnucmat.2011.06.014
  11. Donza, H., Cabrera, O., and Irassar, E.F., "High-strength concrete with different fine aggregate", Cement and Concrete Research, Vol.32, 2002, pp.1755-1761. https://doi.org/10.1016/S0008-8846(02)00860-8
  12. Karen, L., Scrivener, Alison K., Crumbie, and Peter Laugesen, "The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete", Interface Science, Vol.12, 2004, pp.411-421. https://doi.org/10.1023/B:INTS.0000042339.92990.4c
  13. Metha, P.K., "Concrete-structure, properties, and materials", Prentice-Hall, 1986, pp.64-69.
  14. Bonavetti, V.L., and Irassar, E.F., "The effect of stone dust content in sand", Cement and Concrete Research, Vol.24, No.3, 1993, pp.580-590. https://doi.org/10.1016/0008-8846(94)90147-3
  15. KS L 5111, Flow table for use in tests of hydraulic cement, 2007.
  16. KS L 5105, Testing method for compressive strength of hydraulic cement mortars, 2007.
  17. KS L 5104, Testing method for tensile strength of hydraulic cement mortars, 2012.