DOI QR코드

DOI QR Code

Application of Lignocellulosic and Macro-algae Hydrolysates for Culture of Chlorella saccharophila

Chlorella saccharophila 배양을 위한 목질계 및 해조류 바이오매스 가수분해물의 이용

  • Kim, A-Ram (Department of Biotechnology, Pukyong National University) ;
  • Kim, Hyo Seon (Department of Biotechnology, Pukyong National University) ;
  • Park, Mi-Ra (Department of Biotechnology, Pukyong National University) ;
  • Kim, Sung-Koo (Department of Biotechnology, Pukyong National University) ;
  • Jeong, Gwi-Taek (Department of Biotechnology, Pukyong National University)
  • Received : 2016.08.17
  • Accepted : 2016.10.18
  • Published : 2016.12.28

Abstract

In this study, we investigated the possibility of using hydrolysates of lignocellulosics (rapeseed straw, barley straw, rice straw) and marine macro-algae (Undaria pinnatifida, Laminaria japonica, Enteromorpha intestinalis, and Gracilaria verrucosa) to cultivate Chlorella saccharophila. The growth of C. saccharophila was inhibited by 7 hydrolysates without active carbon treatment. In contrast, hydrolysates treated with active carbon increased the cell growth and product (oil and chlorophyll) formation by C. saccharophila. The oil contents of C. saccharophila treated with each hydrolysate were $41.26{\pm}0.69%$ (glucose), $22.06{\pm}1.21%$ (rapeseed straw), $28.65{\pm}1.08%$ (barley straw), $31.15{\pm}0.76%$ (rice straw), $31.50{\pm}2.12%$ (U. pinnatifida), $31.49{\pm}4.53%$ (L. japonica), $29.63{\pm}3.93%$ (E. intestinalis), and $26.15{\pm}1.99%$ (G. verrucosa), respectively. Lignocellulosics and marine macro-algae may be useful resources for improving the mass cultivation of C. saccharophila.

본 연구에서는 3종류의 목질계 바이오매스와 4종류의 해조류 바이오매스를 전처리와 효소가수분해 과정을 통하여 얻은 환원당을 이용하여 C. saccharophila를 배양하였다. 얻어진 가수분해물을 활성탄 처리 유무에 따라 배양한 결과, 목질계 바이오매스와 해조류 바이오매스 가수분해물을 활성탄 처리하지 않은 경우에는 C. saccharophila의 성장이 저해되었다. 목질계 바이오매스인 유채대와 보리대 그리고 볏짚과 해조류 바이오매스인 미역, 다시마, 파래 그리고 꼬시래기 가수분해물의 경우 활성탄 등으로 처리한 경우에서 목질계 바이오매스와 해조류 바이오매스 가수분해물에서 C. saccharophila의 성장이 관찰되었다. 미세조류의 생산성과 oil 함량, chlorophyll 등을 고려하였을 때 목질계 바이오매스와 해조류 바이오매스는 C. saccharophila의 product 생산을 위한 배양에 이점을 가지며, 특히 chlorophyll 생산에 보다 유용하리라 판단된다.

Keywords

References

  1. Demibras A. 2007. Progress and recent trends in biofuels. Prog. Energy Combust. Sci. 33: 1-18. https://doi.org/10.1016/j.pecs.2006.06.001
  2. Folch J, Lees M, Sloane-Stanley GH. 1957. A simple method for the isolation and purification of total lipid from animal tissues. J. Biochem. 226: 497-502.
  3. Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH. 2006. The biofine process - Production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks, pp. 139-164. In: B. Kamm, P. R. Gruber, M. Kamm (eds.). Biorefineries - Industrial Processes and Products, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  4. Jeong GT, Park DH. 2015. Optimization of lipid extraction from marine green macro-algae as biofuel resources. Korean J. Chem. Eng. 32: 2463-2467. https://doi.org/10.1007/s11814-015-0083-1
  5. Jeong GT, Hong YK, Lee HH, Kong IS, Kim JK, Park NG, et al. 2014. Recovery of algal oil from marine green macro-algae Enteromorpha intestinalis by acidic-hydrothermal process. Appl. Biochem. Biotechnol. 174: 221-230. https://doi.org/10.1007/s12010-014-1060-6
  6. Kang KE, Jeong GT, Park DH. 2012. Pretreatment of rapeseed straw by sodium hydroxide. Bioprocess Biosyst. Eng. 35: 705-713. https://doi.org/10.1007/s00449-011-0650-8
  7. Kim JK, Park HJ, Kim YH, Joo H, Lee SH, Lee JH. 2013. UV-induced mutagenesis of Nannochloropsis oculata for the increase of lipid accumulation and its characterization. J. Korean Ind. Eng. Chem. 24: 155-160.
  8. Kim DH, Jeong GT. 2014. Antimicrobial and antioxidant activities of extracts of marine greenalgae Enteromorpha intestinalis. KSBB J. 29: 92-97. https://doi.org/10.7841/ksbbj.2014.29.2.92
  9. Kwon OM, Kim SK, Jeong GT. 2016. Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa. Bioprocess. Biosyst. Eng. 39: 1173-1180. https://doi.org/10.1007/s00449-016-1593-x
  10. Lynd LR. 1996. Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu. Rev. Energy Environ. 21: 403-465. https://doi.org/10.1146/annurev.energy.21.1.403
  11. Lee SM, Kim JH, Cho HY, Joo H, Lee JH. 2009. Production of bioethanol from brown algae by physicochemical hydrolysis. J. Korean Ind. Eng. Chem. 20: 517-521.
  12. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  13. Park JI, Woo HC, Lee JH. 2008. Production of bio-energy from marine algae: Status and perspectives. KIChE. 6: 833-844.
  14. Park EY, Jeong SM, Kim YJ, Lee DH. 2012. Review on hydrolysis methods of the macroalgae for production of bioethanol. J. Korea Soc. Waste Manage. 29: 323-333.
  15. Song BB, Kim SK, Jeong GT. 2011. Enzymatic hydrolysis of marine algae Hizikia fusiforme. KSBB J. 26: 347-351. https://doi.org/10.7841/ksbbj.2011.26.4.347
  16. The Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL). 2004. Top value added chemicals from biomass, volume I - Results of screening for potential candidates from sugars and synthesis gas. http://www.osti.gov/bridge.
  17. Yeon JH, Seo HB, Oh SH, Choi WS, Kang DH, Lee HY, et al. 2010. Bioethanol production from hydrolysate of seaweed Sargassum sagamianum. KSBB J. 25: 283-288.

Cited by

  1. Chlorella saccharophila 배양 최적화 및 유용물질의 생산 vol.55, pp.1, 2016, https://doi.org/10.9713/kcer.2017.55.1.74