References
- Adams TH, Wieser JK, Yu J-H. 1998. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 62: 35-54.
- Ahmed YL, Gerke J, Park H-S, Bayram O, Neumann P, Ni M, et al. 2013. The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-kappaB. PLoS Biol. 11: e1001750. https://doi.org/10.1371/journal.pbio.1001750
- Amaike S, Keller NP. 2009. Distinct roles for VeA and LaeA in development and pathogenesis of Aspergillus flavus. Eukaryot. Cell 8: 1051-1060. https://doi.org/10.1128/EC.00088-09
- Atoui A, Kastner C, Larey CM, Thokala R, Etxebeste O, Espeso EA, et al. 2010. Cross-talk between light and glucose regulation controls toxin production and morphogenesis in Aspergillus nidulans. Fungal Genet. Biol. 47: 962-972. https://doi.org/10.1016/j.fgb.2010.08.007
- Baidya S, Duran RM, Lohmar JM, Harris-Coward PY, Cary JW, Hong SY, et al. 2014. VeA is associated with the response to oxidative stress in the aflatoxin producer Aspergillus flavus. Eukaryot. Cell 13: 1095-1103. https://doi.org/10.1128/EC.00099-14
- Bayram O, Bayram OS, Ahmed YL, Maruyama J, Valerius O, Rizzoli SO, et al. 2012. The Aspergillus nidulans MAPK module AnSte11-Ste50-Ste7-Fus3 controls development and secondary metabolism. PLoS Genet. 8: e1002816. https://doi.org/10.1371/journal.pgen.1002816
- Bayram O, Braus GH. 2012. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol. Rev. 36: 1-24. https://doi.org/10.1111/j.1574-6976.2011.00285.x
- Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, et al. 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320: 1504-1506. https://doi.org/10.1126/science.1155888
- Bennett JW. 2010. An Overview of the Genus Aspergillus. Aspergillus: Molecular Biology and Genomics 1-17.
- Beyhan S, Gutierrez M, Voorhies M, Sil A. 2013. A temperature-responsive network links cell shape and virulence traits in a primary fungal pathogen. PLoS Biol. 11: e1001614. https://doi.org/10.1371/journal.pbio.1001614
- Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, et al. 2005. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr. Biol. 15: 1833-1838. https://doi.org/10.1016/j.cub.2005.08.061
- Bok JW, Keller NP. 2004. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot. Cell 3: 527-535. https://doi.org/10.1128/EC.3.2.527-535.2004
- Bok JW, Soukup AA, Chadwick E, Chiang YM, Wang CC, Keller NP. 2013. VeA and MvlA repression of the cryptic orsellinic acid gene cluster in Aspergillus nidulans involves histone 3 acetylation. Molecul. Microbiol. 89: 963-974. https://doi.org/10.1111/mmi.12326
- Calvo AM. 2008. The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet. Biol. 45: 1053-1061. https://doi.org/10.1016/j.fgb.2008.03.014
- Calvo AM, Bok J, Brooks W, Keller NP. 2004. veA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl. Environ. Microbiol. 70: 4733-4739. https://doi.org/10.1128/AEM.70.8.4733-4739.2004
- Calvo AM, Wilson RA, Bok JW, Keller NP. 2002. Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. Rev. 66: 447-459. https://doi.org/10.1128/MMBR.66.3.447-459.2002
- Cary JW, Harris-Coward PY, Ehrlich KC, Di Mavungu JD, Malysheva SV, De Saeger S, et al. 2014. Functional characterization of a veA-dependent polyketide synthase gene in Aspergillus flavus necessary for the synthesis of asparasone, a sclerotium-specific pigment. Fungal Genet. Biol. 64: 25-35. https://doi.org/10.1016/j.fgb.2014.01.001
- Casselton L, Zolan M. 2002. The art and design of genetic screens: filamentous fungi. Nat. Rev. Genet. 3: 683-697. https://doi.org/10.1038/nrg889
- Chang PK, Scharfenstein LL, Li P, Ehrlich KC. 2013. Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production. Fungal Genet. Biol. 58-59: 71-79. https://doi.org/10.1016/j.fgb.2013.08.009
- Crespo-Sempere A, Marin S, Sanchis V, Ramos AJ. 2013. VeA and LaeA transcriptional factors regulate ochratoxin A biosynthesis in Aspergillus carbonarius. Int. J. Food Microbiol. 166: 479-486. https://doi.org/10.1016/j.ijfoodmicro.2013.07.027
- Dhingra S, Andes D, Calvo AM. 2012. VeA regulates conidiation, gliotoxin production, and protease activity in the opportunistic human pathogen Aspergillus fumigatus. Eukaryot. Cell 11: 1531-1543. https://doi.org/10.1128/EC.00222-12
- Duran RM, Cary JW, Calvo AM. 2007. Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Appl. Microbiol. Biotechnol. 73: 1158-1168.
- Duran RM, Gregersen S, Smith TD, Bhetariya PJ, Cary JW, Harris-Coward PY, et al. 2014. The role of Aspergillus flavus veA in the production of extracellular proteins during growth on starch substrates. Appl. Microbiol. Biotechnol. 98: 5081-5094. https://doi.org/10.1007/s00253-014-5598-6
- Ebbole DJ. 2010. The Conidium. Cellular and Molecular Biology of Filamentous Fungi. 577-590.
- Geiser DM, Klich MA, Frisvad JC, Peterson SW, Varga J, Samson RA. 2007. The current status of species recognition and identification in Aspergillus. Stud. Mycol. 59: 1-10. https://doi.org/10.3114/sim.2007.59.01
- Han KH, Kim JH, Moon H, Kim S, Lee SS, Han DM, et al. 2008. The Aspergillus nidulans esdC (early sexual development) gene is necessary for sexual development and is controlled by veA and a heterotrimeric G protein. Fungal Genet. Biol. 45: 310-318. https://doi.org/10.1016/j.fgb.2007.09.008
- Hedtke M, Rauscher S, Rohrig J, Rodriguez-Romero J, Yu Z, Fischer R. 2015. Light-dependent gene activation in Aspergillus nidulans is strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation. Mol. Microbiol. 97: 733-745. https://doi.org/10.1111/mmi.13062
- Jeong HY, Han DM, Jahng KY, Chae KS. 2000. The rpl16a gene for ribosomal protein L16A identified from expressed sequence tags is differentially expressed during sexual development of Aspergillus nidulans. Fungal Genet. Biol. 31: 69-78. https://doi.org/10.1006/fgbi.2000.1233
- Kafer E. 1965. Origins of translocations in Aspergillus nidulans. Genetics 52: 217-232.
- Kamei K, Watanabe A. 2005. Aspergillus mycotoxins and their effect on the host. Med. Mycol. 43: S95-S99. https://doi.org/10.1080/13693780500051547
- Kato N, Brooks W, Calvo AM. 2003. The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryot. Cell 2: 1178-1186. https://doi.org/10.1128/EC.2.6.1178-1186.2003
- Keller NP, Turner G, Bennett JW. 2005. Fungal secondary metabolism - from biochemistry to genomics. Nat. Rev. Microbiol. 3: 937-947. https://doi.org/10.1038/nrmicro1286
- Kensler TW, Roebuck BD, Wogan GN, Groopman JD. 2011. Aflatoxin: a 50-year odyssey of mechanistic and translational toxicology. Toxicol. Sci. 120: S28-48. https://doi.org/10.1093/toxsci/kfq283
- Kim H, Han K, Kim K, Han D, Jahng K, Chae K. 2002. The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet. Biol. 37: 72-80. https://doi.org/10.1016/S1087-1845(02)00029-4
- Krappmann S, Bayram O, Braus GH. 2005. Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Eukaryot. Cell 4: 1298-1307. https://doi.org/10.1128/EC.4.7.1298-1307.2005
- Krijgsheld P, Bleichrodt R, van Veluw GJ, Wang F, Muller WH, Dijksterhuis J, et al. 2013. Development in Aspergillus. Stud. Mycol. 74: 1-29. https://doi.org/10.3114/sim0006
- Marui J, Ohashi-Kunihiro S, Ando T, Nishimura M, Koike H, Machida M. 2010. Penicillin biosynthesis in Aspergillus oryzae and its overproduction by genetic engineering. J. Biosci. Bioeng. 110: 8-11. https://doi.org/10.1016/j.jbiosc.2010.01.001
- Mooney JL, Hassett DE, Yager LN. 1990. Genetic analysis of suppressors of the veA1 mutation in Aspergillus nidulans. Genetics 126: 869-874.
- Mooney JL, Yager LN. 1990. Light is required for conidiation in Aspergillus nidulans. Genes Dev. 4: 1473-1482. https://doi.org/10.1101/gad.4.9.1473
- Ni M, Yu J-H. 2007. A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS One 2: e970. https://doi.org/10.1371/journal.pone.0000970
- Palmer JM, Theisen JM, Duran RM, Grayburn WS, Calvo AM, Keller NP. 2013. Secondary metabolism and development is mediated by LlmF control of VeA subcellular localization in Aspergillus nidulans. PLoS Genet. 9: e1003193. https://doi.org/10.1371/journal.pgen.1003193
- Park H-S, Bayram O, Braus GH, Kim SC, Yu J-H. 2012. Characterization of the velvet regulators in Aspergillus fumigatus. Molecul. Microbiol. 86: 937-953. https://doi.org/10.1111/mmi.12032
- Park H-S, Nam TY, Han KH, Kim SC, Yu J-H. 2014. VelC positively controls sexual development in Aspergillus nidulans. PLoS One 9: e89883. https://doi.org/10.1371/journal.pone.0089883
- Park H-S, Ni M, Jeong K-C, Kim YH, Yu J-H. 2012. The role, interaction and regulation of the velvet regulator VelB in Aspergillus nidulans. PLoS One 7: e45935. https://doi.org/10.1371/journal.pone.0045935
- Park H-S, Yu J-H. 2012. Genetic control of asexual sporulation in filamentous fungi. Curr. Opin. Microbiol. 15: 669-677. https://doi.org/10.1016/j.mib.2012.09.006
- Park H-S, Yu YM, Lee MK, Maeng PJ, Kim SC, Yu J-H. 2015. Velvetmediated repression of beta-glucan synthesis in Aspergillus nidulans spores. Sci. Rep. 5: 10199. https://doi.org/10.1038/srep10199
- Park HS, Yu JH. 2016. Developmental regulators in Aspergillus fumigatus. J. Microbiol. 54: 223-231. https://doi.org/10.1007/s12275-016-5619-5
- Purschwitz J, Muller S, Fischer R. 2009. Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the White Collar protein LreB. Mol. Genet. Genomics 281: 35-42. https://doi.org/10.1007/s00438-008-0390-x
- Purschwitz J, Muller S, Kastner C, Schoser M, Haas H, Espeso EA, et al. 2008. Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr. Biol. 18: 255-259. https://doi.org/10.1016/j.cub.2008.01.061
- Reverberi M, Ricelli A, Zjalic S, Fabbri AA, Fanelli C. 2010. Natural functions of mycotoxins and control of their biosynthesis in fungi. Appl. Microbiol. Biotechnol. 87: 899-911. https://doi.org/10.1007/s00253-010-2657-5
- Reyes-Dominguez Y, Bok JW, Berger H, Shwab EK, Basheer A, Gallmetzer A, et al. 2010. Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Mol. Microbiol. 76: 1376-1386. https://doi.org/10.1111/j.1365-2958.2010.07051.x
- Roberts RG. 2013. The velvet underground emerges. PLoS Biol. 11: e1001751. https://doi.org/10.1371/journal.pbio.1001751
- Rogers S, Wells R, Rechsteiner M. 1986. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234: 364-368. https://doi.org/10.1126/science.2876518
- Roze LV, Chanda A, Laivenieks M, Beaudry RM, Artymovich KA, Koptina AV, et al. 2010. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism. BMC Biochem. 11: 33. https://doi.org/10.1186/1471-2091-11-33
- Sarikaya-Bayram O, Bayram O, Feussner K, Kim JH, Kim HS, Kaever A, et al. 2014. Membrane-bound methyltransferase complex VapA-VipC-VapB guides epigenetic control of fungal development. Dev. Cell 29: 406-420. https://doi.org/10.1016/j.devcel.2014.03.020
- Sarikaya-Bayram O, Palmer JM, Keller N, Braus GH, Bayram O. 2015. One Juliet and four Romeos: VeA and its methyltransferases. Front. Microbiol. 6: 1.
- Sarikaya Bayram O, Bayram O, Valerius O, Park H-S, Irniger S, Gerke J, et al. 2010. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet. 6: e1001226. https://doi.org/10.1371/journal.pgen.1001226
- Sprote P, Brakhage AA. 2007. The light-dependent regulator velvet A of Aspergillus nidulans acts as a repressor of the penicillin biosynthesis. Arch. Microbiol. 188: 69-79. https://doi.org/10.1007/s00203-007-0224-y
- Stinnett SM, Espeso EA, Cobeno L, Araujo-Bazan L, Calvo AM. 2007. Aspergillus nidulans VeA subcellular localization is dependent on the importin alpha carrier and on light. Mol. Microbiol. 63: 242-255. https://doi.org/10.1111/j.1365-2958.2006.05506.x
- Timberlake WE. 1990. Molecular genetics of Aspergillus development. Ann. Rev. Genet. 24: 5-36. https://doi.org/10.1146/annurev.ge.24.120190.000253
- Todd RB, Hynes MJ, Andrianopoulos A. 2006. The Aspergillus nidulans rcoA gene is required for veA-dependent sexual development. Genetics 174: 1685-1688. https://doi.org/10.1534/genetics.106.062893
- Tsitsigiannis DI, Zarnowski R, Keller NP. 2004. The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans. J. Biol. Chem. 279: 11344-11353. https://doi.org/10.1074/jbc.M310840200
- Vienken K, Scherer M, Fischer R. 2005. The Zn(II)2Cys6 putative Aspergillus nidulans transcription factor repressor of sexual development inhibits sexual development under low-carbon conditions and in submersed culture. Genetics 169: 619-630. https://doi.org/10.1534/genetics.104.030767
- Wang F, Dijksterhuis J, Wyatt T, Wosten HA, Bleichrodt RJ. 2015. VeA of Aspergillus niger increases spore dispersing capacity by impacting conidiophore architecture. Antonie van Leeuwenhoek. 107: 187-199. https://doi.org/10.1007/s10482-014-0316-z
- Yager LN. 1992. Early developmental events during asexual and sexual sporulation in Aspergillus nidulans. Biotechnology 23: 19-41.
- Yu J-H. 2006. Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. J. Microbiol. 44: 145-154.
- Yu J-H, Keller N. 2005. Regulation of secondary metabolism in filamentous fungi. Ann. Rev. Phytopathol. 43: 437-458. https://doi.org/10.1146/annurev.phyto.43.040204.140214
Cited by
- Characterization of the velvet regulators in Aspergillus flavus vol.56, pp.12, 2018, https://doi.org/10.1007/s12275-018-8417-4
- A Comprehensive Analysis of the Small GTPases Ypt7 Involved in the Regulation of Fungal Development and Secondary Metabolism in Monascus ruber M7 vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.00452
- The role of the VosA-repressed dnjA gene in development and metabolism in Aspergillus species vol.66, pp.3, 2016, https://doi.org/10.1007/s00294-020-01058-y
- Aspergillus속 균주를 이용한 콩 발효물의 이화학적 특성 vol.33, pp.3, 2016, https://doi.org/10.9799/ksfan.2020.33.3.279
- Homeobox proteins are essential for fungal differentiation and secondary metabolism in Aspergillus nidulans vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-63300-4
- Velvet activated McrA plays a key role in cellular and metabolic development in Aspergillus nidulans vol.10, pp.1, 2016, https://doi.org/10.1038/s41598-020-72224-y
- HbxB Is a Key Regulator for Stress Response and β-Glucan Biogenesis in Aspergillus nidulans vol.9, pp.1, 2016, https://doi.org/10.3390/microorganisms9010144
- Transcriptomic, Protein-DNA Interaction, and Metabolomic Studies of VosA, VelB, and WetA in Aspergillus nidulans Asexual Spores vol.12, pp.1, 2021, https://doi.org/10.1128/mbio.03128-20
- Mannitol-1-phosphate dehydrogenase, MpdA, is required for mannitol production in vegetative cells and involved in hyphal branching, heat resistance of conidia and sexual development in Aspergillus nid vol.67, pp.4, 2016, https://doi.org/10.1007/s00294-021-01163-6
- Mr-AbaA Regulates Conidiation by Interacting with the Promoter Regions of Both Mr-veA and Mr-wetA in Metarhizium robertsii vol.9, pp.2, 2016, https://doi.org/10.1128/spectrum.00823-21