DOI QR코드

DOI QR Code

저비용 개방형 Microcontroller를 사용한 온실 환경 측정 시스템 개발

Development of a Greenhouse Environment Monitoring System using Low-cost Microcontroller and Open-source Software

  • 차미경 (제주대학교 식물자원환경전공) ;
  • 전윤아 (제주대학교 원예환경전공) ;
  • 손정익 (서울대학교 식물생산과학부) ;
  • 정선옥 (충남대학교 바이오시스템기계공학과) ;
  • 조영열 (제주대학교 원예환경전공)
  • Cha, Mi-Kyung (Major of Plant Resources and Environment, Jeju National University) ;
  • Jeon, Youn A (Major of Horticultural Science, Jeju National University) ;
  • Son, Jung Eek (Department of Plant Science, Seoul National University) ;
  • Chung, Sun-Ok (Department of Biosystems Machinery Engineering, Chungnam National University) ;
  • Cho, Young-Yeol (Major of Horticultural Science, Jeju National University)
  • 투고 : 2016.05.13
  • 심사 : 2016.07.27
  • 발행 : 2016.12.30

초록

환경요인에 대한 계속적인 모니터링은 농민들에게 온실에서 생육한 작물의 품질과 생산성을 개선할 수 있는 유용한 정보를 제공해 줄 것이다. 이 연구의 목적은 개방형의 저비용 microcontroller를 사용하여 온실 환경 계측 시스템을 개발하기 위함이다. 측정하기 위한 온실 환경 요인들은 대기 온도, 상대습도와 이산화탄소 등이다. 온도, 상대습도와 이산화탄소 농도 측정범위는 $40{\sim}120^{\circ}C$, 0~100%와 0-10,000 ppm이다. 온실 환경 자료를 실시간으로 모니터링하기 위해 $128{\times}64$ 그래픽 LCD을 사용하였다. 컴퓨터와 통신하기 위해 USB 인터페이스를 구성한 아두이노 Uno R3는 6개의 아날로그 입력과 14개의 디지털 입출력 핀으로 구성되어 있다. 온도/습도 센서는 디지털 핀 2번과 3번에 연결하였다. 이산화탄소 센서는 디지털 핀 12번과 13번에 연결하였다. LCD는 디지털 1번(TX)에 연결하였다. 스케치는 아두이노 프로그램 (IDE)로 프로그래밍하였다. 아두이노보드, 센서 및 액세서리 등을 포함한 측정 시스템은 저비용(총 244$)으로 개발되었다. 벤로형 온실에서 환경 요인들은 문제 없이 잘 측정되었다. 우리는 개방형 소프트웨어를 사용한 저비용 microcontroller가 우리 나라의 대부분의 면적을 차지하는 비닐 온실의 대기 환경을 측정하기 위해서 유용하게 사용되리라 예상할 수 있었다.

Continuous monitoring of environmental parameters provides farmers with useful information, which can improve the quality and productivity of crops grown in greenhouses. The objective of this study was to develop a greenhouse environment measurement system using a low-cost microcontroller with open-source software. Greenhouse environment parameters measured were air temperature, relative humidity, and carbon dioxide ($CO_2$) concentration. The ranges of the temperature, relative humidity, and $CO_2$ concentration were -40 to $120^{\circ}C$, 0 to 100%, and 0 to 10,000 ppm, respectively. A $128{\times}64$ graphic LCD display was used for real-time monitoring of the greenhouse environments. An Arduino Uno R3 consisted of a USB interface for communicating with a computer, 6 analog inputs, and 14 digital input/output pins. A temperature/relative humidity sensor was connected to digital pins 2 and 3. A $CO_2$ sensor was connected to digital pins 12 and 13. The LCD was connected to digital pin 1 (TX). The sketches were programmed with the Arduino Software (IDE). A measurement system including the Arduino board, sensors, and accessories was developed (totaling $244). Data for the environmental parameters in a venlo-type greenhouse were obtained using this system without any problems. We expect that the low-cost microcontroller using open-source software can be used for monitoring the environments of plastic greenhouses in Korea.

키워드

참고문헌

  1. Arduino (2016) Downloads the Arduino software. https://www.arduino.cc/en/Main/Software Accessed 14 March 2016
  2. Bitella G, Rossi R, Bochicchio R, Perniola M, Amato M (2014) A novel low-cost open-hardware platform for monitoring soil water content and multiple soil-air-vegetation parameters. Sensors 14:19639-19659. doi:10.3390/s141019639
  3. CO2meter.com (2016a) News. Arduino code for K-30 CO2 sensor works for S8 sensor too. http://www.co2meter.com/blogs/news/35432257-arduino-code-for-k-30-co2-sensor-works-for-s8-sensor-too Accessed 14 March 2016
  4. CO2meter.com (2016b) Sensors. K-30 10,000ppm CO2 Sensor. http://www.co2meter.com/collections/co2-sensors/products/k-30-co2-sensor-module Accessed 14 March 2016
  5. D'Ausilio A (2012) Arduino: A low-cost multipurpose lab equipment. Behav Res 44:305-313. doi.org/10.3758/s13428-011-0163-z
  6. Feescale Semiconductor (2010) Technical data sheet for MPX5100. http://www.freescale.com/files/sensors/doc/data_sheet/MPX5100.pdf?pspll=1. Accessed 9 May 2016
  7. Ferrarezi RS, Dove SK, MW van Lersel (2015) An automated system for monitoring soil moisture and controlling irrigation using lowcost open-source microcontrollers. HortTechnology 25:110-118
  8. Github (2016) STH1x. https://github.com/practicalarduino/SHT1x. Accessed 14 March 2016
  9. Jang YA, Mon BH, Do KR, Chun CH (2014) Effects of photosynthetic photon flux and carbon dioxide concentration on the photosynthesis and growth of grafted pepper transplants during healing and acclimatization. Hortic Environ Biotechnol 55:387-396. doi:10.1007/s13580-014-0221-4
  10. Kim YD (2014) Sensor data standardization technology for smart agriculture. The Korea Institute of Electronic Communication Sciences 8(2):267-270. doi.org/10.13067/JKIECS.2014.9.2.267
  11. Kwon JK, Kang KH, Kweon GB, Choi YH, Kang NJ, Lee JH, Rhee HC (2006) Effect of automatic ventilation of greenhouse during daytime on the growth and wilting occurrence in watermelon. Korean J Hortic Sci Technol 24:138-142
  12. Moon W, Lee YB, Son JE (2012) Protected horticulture. KNOU Press, Seoul, Korea, pp253-259
  13. Ministry of Food, Agriculture, Forestry and Fisheries (MFAFF) (2015) Statistics of vegetable production in the year 2014. http://ebook.mafra.go.kr/preview/viewer/main.php?site=2&menuno=2&previewno=7548&iframe=0&dlbt= Accessed 9 May 2016
  14. Sample Electronic (2016) Arduino shield SE-KLCD-A. http://www.robot.co.kr/front/php/product.php?product_no=2581&main_cate_no=1&display_group=2 Accessed 14 March 2016
  15. Thalheimer M (2013) A low-cost electronic tensiometer system for continuous monitoring of soil water potential. J Agric Eng 44:114-119. doi : 10.4081/jae.2013.e16
  16. Value Creation Technology (2016) Sensors. http://www.vctec.co.kr/product/detail.html?product_no=951&cate_no=145&display_group=1 Accessed 14 March 2016
  17. Wikipedia (2016) Arduino. https://ko.wikipedia.org/wiki/%EC%95%84%EB%91%90%EC%9D%B4%EB%85%B8 Accessed 14 March 2016
  18. Yeon IW, Choi JP, Lee WC (2015) Plant factory nutrient automation system using Arduino hardware platform. Proceedings of Symposium of the Korean Institute of Communications and Information Sciences 581-582