DOI QR코드

DOI QR Code

Effect of Salinity Stress on Growth, Yield, and Proline Accumulation of Cultivated Potatoes (Solanum tuberosum L.)

염 스트레스에 따른 감자 품종 (Solanum tuberosum L.) 간 생육, 수량 및 proline 함량 변이

  • Im, Ju Sung (Highland Agriculture Research Institute, National Institute of Crop Science) ;
  • Cho, Ji Hong (Highland Agriculture Research Institute, National Institute of Crop Science) ;
  • Cho, Kwang Soo (Highland Agriculture Research Institute, National Institute of Crop Science) ;
  • Chang, Dong Chil (Highland Agriculture Research Institute, National Institute of Crop Science) ;
  • Jin, Yong Ik (Highland Agriculture Research Institute, National Institute of Crop Science) ;
  • Yu, Hong Seob (Highland Agriculture Research Institute, National Institute of Crop Science) ;
  • Kim, Wha Yeong (Department of Applied Plant Science, Kangnung-Wonju National University)
  • 임주성 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 조지홍 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 조광수 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 장동칠 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 진용익 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 유홍섭 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 김화영 (강릉원주대학교 식물생명과학과)
  • Received : 2016.07.06
  • Accepted : 2016.08.08
  • Published : 2016.12.30

Abstract

This study evaluated the responses of 18 potato cultivars to three levels of salinity stress (electrical conductivity, EC: 1.0, 4.0, and $8.0dS{\cdot}m^{-1}$). Stem, leaf, root, chlorophyll, tuber yield, and proline content were investigated and statistically analyzed using analysis of variance (ANOVA) and correlations. Stem number and stem diameter were not affected by salinity, but stem length and aerial weight showed highly significant responses to salinity. Aerial weight decreased with increasing salinity levels in most cultivars, while it increased in some the cultivars 'Daejima', 'Goun', 'Haryeong', and 'LT-8'. Leaf number, leaf area index, and leaf weight were most significantly affected by salinity and the cultivar ${\times}$ salinity interaction. Root length, root weight, total chlorophyll and chlorophyll a were affected by salinity, but not by the cultivar ${\times}$ salinity interaction. The opposite trend was shown in chlorophyll b. Although there was great variability among cultivars, tuber yield decreased in all cultivars, and was most significantly influenced by salinity and the cultivar ${\times}$ salinity interaction. 'Superior', 'Kroda', 'Romana', and 'Duback' gave better tuber yields under salinity at EC 4.0 and $8.0dS{\cdot}m^{-1}$ than the cultivars with better aerial weights. Proline content was increased by salinity in all cultivars, and was more remarkable in the cultivars with better aerial weights than in cultivars such as 'Superior' and 'Kroda' with better tuber yields. Leaf number, leaf area index, leaf weight, and root length parameters were considered to be useful criteria in the evaluation of salt tolerance because of their high positive correlation with tuber yield; however, given its negative correlation with tuber yield under high salinity, proline content was not. Salinity tolerances varied greatly among potato cultivars. The low correlation between growth and yields of aerial parts under high salinity suggests that, in commercial agriculture, it might be more practical to compare relative yields to controls. Additionally, 'Superior', 'Kroda', 'Romana', and 'Duback' might be very useful cultivars to use in breeding programs to develop salinity-tolerant potatoes, as well as for sustainable potato production in saline areas.

염처리(electrical conductivity, EC 1.0, 4.0, $8.0dS{\cdot}m^{-1}$)에 따른 감자 품종들의 생장, 수량성 및 염 저항성을 이해하고자 국내외 감자 18품종을 각 처리 수준별 염상토 및 염수로 관수 재배하였다. 경, 엽, 뿌리 및 chlorophyll, 수량성, proline 함량을 조사하여 ANOVA 및 상관성을 분석하였다. 경수와 경두께는 염처리의 영향이 없었던 반면, 경장과 지상부 무게는 염에 매우 민감하였다. 특히, 지상부 무게는 대부분 품종에서 고염일수록 감소하였으나 일부 품종('대지', '고운', '하령', 'LT-8')에서는 오히려 더 증가하여 품종 간 차이가 컸다. 엽수, 엽면적, 엽중은 염처리 및 품종${\times}$염의 교호작용에 의해 매우 민감한 영향을 받았으며, 뿌리 생장은 염처리 단일 요인에 대해서는 유의성이 높았으나 품종${\times}$염의 교호작용에 대한 유의성은 없었다. 총 chlorophyll과 chlorophyll a 함량은 염에 민감하였던 반면 품종${\times}$염의 영향은 없었으며, chlorophyll b는 이와 상반된 경향을 나타내었다. 괴경수, 평균괴경무게, 괴경수량 모두 염에 매우 민감하였으며, 괴경수량의 경우, '수미', '크로다', '로마나', '두백'이 지상부 생장이 왕성했던 품종들보다 더 양호하였다. Proline 함량은 염처리로 모든 품종에서 증가하였으며, 지상부 생장이 양호한 품종에서 함량 증가가 두드러졌다. 염 저항성 평가 지표로써 엽수, 엽면적, 엽중 및 뿌리길이는 괴경수량과 밀접한 상관성이 있어 유용할 것으로 여겨졌으나, proline 함량은 염수준이 높을수록 괴경수량과 부의 상관성이 높아 활용 지표로의 효용성이 낮았다. 결론적으로 감자 품종들 간 염 저항성은 매우 다양하였으며, 염수준이 높을수록 지상부 생장과 괴경 수량성 간 상관성이 낮아 수량이 중요한 농업적 측면에서는 염 저항성 판단 시 지상부 생장보다 상대적인 수량감소율을 활용하는 것이 더 실용적일 것으로 생각되며, '수미', '크로다', '로마나', '두백' 등이 염 저항성 감자 육성을 위한 교배재료 및 염이 문제되는 경작지에서 감자의 지속생산을 위하여 유망할 것으로 생각된다.

Keywords

References

  1. Amira MS, Abdul Q (2011) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J. Saudi Soc. Agr. Sci. 10:7-15
  2. AOAC (2003) Official methods of analysis of AOAC Intl. 17th ed. Association of official analytical chemists. Washington, DC, USA.
  3. Arvin MJ, Donnelly DJ (2008) Screening potato cultivars and wild species to abiotic stresses using an electrolyte leakage bioassay. J. Agric. Sci. Technol. 10:33-42
  4. Asish KP, Anath BD (2005) Salt tolerance and salinity effects on plants: A review. Ecotox. Environ. Safety 60:324-349. doi:10.1016/j.ecoenv.2004.06.010
  5. Bates LS, Waldren RP, Teare ED (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205-207. doi:10.1007/BF00018060
  6. Bilski JJ, Nelson DC, Conlon RC (1988) Response of six wild potato species to chloride and sulfate salinity. Am. Potato J. 65:605-612. doi:10.1007/BF02867456
  7. Bruns S, Hechtbuchholz C (1990) Light and electron microscope studies on the leaves of several potato cultivars after application of salt at various developmental stages. Potato Res. 33:33-41. doi:10.1007/BF02358128
  8. Cano EA, Perez-Alfocea F, Moreno V, Bolarin MC (1996) Responses to NaCl stress of cultivated and wild tomato species and their hybrids in callus cultures. Plant Cell Rep. 15:791-794. doi:10.1007/BF00232231
  9. Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiology 137:807-818. doi:10.1104/pp.104.057307
  10. Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J. 4:215-223. doi:10.1046/j.1365-313X.1993.04020215.x
  11. Dreyer I, Horeu C, Lemaillet G, Zimmermann S, Bush DR (1999) Identification and characterization of plant transporters using heterologous expression systems. J. Experimental Botany 50:1073-1087. doi:10.1093/jexbot/50.suppl_1.1073
  12. Elkhatib HA, Elkhatib EA, Khalaf-Allah AM, Elsharkawy AM (2004) Salt tolerance of four potato cultivars. J. Plant Nutrition 27:1575-1583. doi:10.1081/PLN-200026000
  13. Feigin A (1988) Fertilization for increasing salt tolerance of agricultural crops. Israel Agresearch 2:99-138
  14. Feitosa DE, Lacerta C, Cambraia J, Cano MAO, Ruiz HA (2001) Plant growth and solute accumulation and distribution in two sorghum genotypes under NaCl stress. Braz. J. Plant Physiol. 13:270-284
  15. Fidalgo F, Santos A, Santos I, Salema R (2004) Effects of long-term salt stress on antioxidant defence systems, leaf water relations and chloroplast ultrastructure of potato plants. Ann. Appl. Biol. 145:185-192. doi:10.1111/j.1744-7348.2004.tb00374.x
  16. Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: where next? Aust. J. Plant Physiol. 22:875-884. doi:10.1071/PP9950875
  17. Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum 119:355-364. doi:10.1034/j.1399-3054.2003.00223.x
  18. Gama PBS, Inanaga S, Tanaka K, Nakazawa R (2007) Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress. Afr. J. Biotechnol. 6:79-88
  19. Ghosh SC, Asanuma K, Kusutani A, Toyota M (2001) Effect of salt stress on some chemical components and yield of potato. Soil Sci. Plant Nutr. 47:467-475. doi:10.1080/00380768.2001.10408411
  20. Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 31:149-190. doi:10.1146/annurev.pp.31.060180.001053
  21. Hanneman REJr (1989) Potato germplasm resources. Am. Potato J. 66:655-667. doi:10.1007/BF02853985
  22. Hasegawa PM, Bressa RA, Zhu JK, Bohnert H (2000) Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:463-499. doi:10.1146/annurev.arplant.51.1.463
  23. Homayoun H, Mehrabi P, Daliri MS (2011) Study of salinity stress effect on two commercial varieties of potato (Solanum tuberosum L.) after transmitting to green house from in vitro culture. American-Eurasian J. Agric. & Environ. Sci. 11:725-728
  24. Im JS, Cho JH, Cho KS, Chang DC, Jin YI, Yu HS, Cheun CG, Kim MO, Han DS, et al (2015) Salt tolerance and proline accumulation of potato (Solanum tuberosum L.) in vitro plants to NaCl treatment. J. Plant Biotechnol. 42:129-134. doi:10.5010/JPB.2015.42.2.129
  25. Jaarsma R, de Vries RSM, de Boer AH (2013) Effect of salt stress on growth, Na+ accumulation and proline metabolism in potato (Solanum tuberosum ) cultivars. PLoS ONE 8:e60183. 10.1371/journal.pone.0060183. doi:10.1371/journal.pone.0060183
  26. Jamil M, Lee CC, Rehman SU, Lee DB, Ashraf M, Rha ES (2005) Salinity (NaCl) tolerance of brassica species at germination and early seedling growth. Electronic J. Environ. Agric. Food Chem. 4:970-976
  27. Khan MA (2001) Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan. Aquat. Bot. 70:259-268. doi:10.1016/S0304-3770(01)00160-7
  28. Khavarinejad RA, Mostofi Y (1998) Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica 35:151-154. doi:10.1023/A:1006846504261
  29. Kim HS, Heung JJ, Joung YH, Joung H (1995) In vitro selection of salt-resistant Solanum tuberosum L. varieties. J. Kor. Soc. Hort. Sci. 36:172-178
  30. Kim JS, Shim IS, Kim MJ (2010) Physiological response of chinese cabbage to salt stress. Kor. J. Hort. Sci. Technol. 28:343-352
  31. Kim S, Yang CH, Jeong JH, Choi WY, Lee KS, Kim SJ (2013) Physiological response of potato variety to soil salinity. Kor. J. Crop Sci. 58: 85-90. doi:10.7740/kjcs.2013.58.2.085
  32. Larcher W (1980) Physiological plant ecology. In 2nd totally rev. edition ed., Berlin and New York: Springer-Verlag. pp 303. doi:10.1007/978-3-642-96545-6
  33. Levy D, Veilleux RE (2007) Adaptation of potato to high temperatures and salinity-a review. Am. J. Potato Res. 84:487-506. doi:10.1007/BF02987885
  34. Maas EV, Hoffman GJ (1977) Crop salt tolerance-current assessment. J. Irrig. Drain Div. Proc. Am. Soc. Civil Eng. 103:115-134
  35. Mansour MMF (1998) Protection of plasma membrane of onion epidermal cells by glycine betaine and proline against NaCl stress. Plant Physiol. Biochem. 36:767-772. doi:10.1016/S0981-9428(98)80028-4
  36. Martinez CA, Maestri M, Lani EG (1996) In vitro salt tolerance and proline accumulation in Andean potato (Solanum spp.) differing in frost resistance. Plant Sci. 116:177-184. doi:10.1016/0168-9452(96)04374-9
  37. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ. 25:239-250. doi:10.1046/j.0016-8025.2001.00808.x
  38. Nanjo T, Kobayashi M, Yoshiba Y, Wada K, Tsukaya H, Kakaubari Y, Yamaguchi-shinozaki K, Shinozaki K (1999) Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana . Plant J. 18:185-193. doi:10.1046/j.1365-313X.1999.00438.x
  39. Papp JC, Ball MC, Terry N (1983) A comparative study of the effects of NaCl salinity on respiration, photosynthesis, and leaf extension growth in Beta vulgaris L. (sugar beet). Plant, Cell & Environ. 6:675-677. doi:10.1111/j.1365-3040.1983.tb01184.x
  40. Raul L, Andres O, Armado L, Bernardo M, Enrique T (2003) Response to salinity of three grain legumes for potential cultivation in arid areas (plant nutrition). Soil Sci. Plant Nutr. 49:329-336. Doi:10.1080/00380768.2003.10410017
  41. Rodriguez M, Canales E, Borras-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotecnol. Aplic. 22:1-10
  42. Szabados L, Savoure A (2010) Proline: A multifunctional amino acid. Trends in Plant Sci. 15:89-97. Doi:10.1016/j.tplants.2009.11.009
  43. Tort N, Turkyilmaz B (2004) A physiological investigation on the mechanisms of salinity tolerance in some barley culture forms. J.F.S. 27:1-16
  44. van Hoorn JW, Katerji N, Hamdy A, Mastrorilli M (1993) Effect of saline water on soil salinity and on water stress, growth, and yield of wheat and potatoes. Agric. Water Mgmt. 23:247-265. doi:10.1016/0378-3774(93)90032-6
  45. Zidan M, Azaizeh H, Neumann PM (1990) Does salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification. Plant Physiol. 93:7-11. doi:10.1104/pp.93.1.7

Cited by

  1. 염스트레스가 감자(Solanum tuberosum L.)의 건물, 환원당, 무기성분의 함량 및 조성에 미치는 영향 vol.38, pp.1, 2016, https://doi.org/10.5338/kjea.2019.38.1.8
  2. Evaluation of chlorophyll fluorescence parameters and proline content in tomato seedlings grown under different salt stress conditions vol.61, pp.3, 2016, https://doi.org/10.1007/s13580-020-00231-z