DOI QR코드

DOI QR Code

IEEE 802.15.4 저속 WPAN에서 듀티 사이클과 비콘 추적의 통합 제어

Joint Control of Duty Cycle and Beacon Tracking in IEEE 802.15.4 LR-WPAN

  • 박성우 (한남대학교 정보통신공학과)
  • Park, Sung-Woo (Dept. of Information and Communication Eng., Hannam University)
  • 투고 : 2015.10.27
  • 심사 : 2016.01.24
  • 발행 : 2016.01.30

초록

IEEE 802.15.4 LR-WPAN에서 대부분의 디바이스는 배터리에 의존해 동작하기 때문에 효율적인 에너지 소비기능을 갖추도록 설계되어야 한다. 본 논문은 LR-WPAN에서 에너지 절약을 위한 두 개의 알고리즘, DDC(Dynamic Duty Cycle)와 DBT(: Dynamic Beacon Tracking)를 제안한다. DDC 알고리즘은 채널 상태에 따라 듀티 사이클을 동적으로 조정한다. DBT 알고리즘은 트래픽 조건에 따라 비콘 트래킹 모드를 적응적으로 제어한다. 또한, DDC와 DBT 알고리즘을 결합함으로써 프레임 전달률과 평균 지연 시간을 만족할 만한 수준으로 유지하면서 광범위한 입력 부하에 대해 효과적으로 에너지를 절약할 수 있다.

Since most of devices in the IEEE 802.15.4 LR-WPAN are expected to operate on batteries, they must be designed to consume energy in a very conservative way. Two energy conservation algorithms are proposed for the LR-WPAN: DDC (Dynamic Duty Cycle) and DBT (Dynamic Beacon Tracking). The DDC algorithm adjusts duty cycle dynamically depending on channel conditions. The DBT algorithm switches beacon tracking mode on and off adaptively depending on traffic conditions. Combining the two algorithms reduces energy consumption more efficiently for a wide range of input loads, while maintaining frame delivery ratio and average delay at satisfactory levels.

키워드

참고문헌

  1. J. Gutierrez, M. Naeve, E. Callaway, M. Bourgeois, V. Mitter, and B. Heile, "IEEE 802.15.4: A developing standard for low-power low-cost wireless personal area networks," IEEE Network, vol. 15, issue 5, Sept./Oct. 2001, pp. 12-19. https://doi.org/10.1109/65.953229
  2. G. Kim, "Implementation of Real-time Sensor Monitoring System on Zigbee Module," J. of the Korea Institute of Electronic Communication Science, vol. 6, no. 2, 2011, pp. 312-318.
  3. S. Ergen, C. Fischione, and A. S-Vincentelli, "Duty-cycle optimization in unslotted 802.15.4 wireless sensor networks," Proc. Global Telecommunications Conference, New Orleans, USA, Nov. 2008, pp. 1-6.
  4. R. Alberola and D. Pesch, "Duty cycle learning algorithm (DCLA) for IEEE 802.15.4 beacon-enabled wireless sensor networks," Ad Hoc Networks, vol. 10, issue. 4, June 2012, pp. 664-679. https://doi.org/10.1016/j.adhoc.2011.06.006
  5. W. Du, D. Navarro, and F. Mieyeville, "Performance evaluation of IEEE 802.15.4 sensor networks in industrial applications," Int. J. Comm. Sys., vol. 28, issue 10, July 2015, pp. 1657-1674. https://doi.org/10.1002/dac.2756
  6. IEEE Std. 802.15.4 Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE, Sept. 2011.
  7. D. Jeon, "A study on the Implementation Extended Concept of GTS in IEEE 802.15.4," J. of the Korea Institute of Electronic Communication Science, vol. 10, no. 3, 2015, pp. 319-326. https://doi.org/10.13067/JKIECS.2015.10.3.319
  8. G. Lu, B. Krishnamachari, and C. Raghavendra, "Performance evaluation of the IEEE 802.15.4 MAC for low-rate low-power wireless networks", Proc. Int'l Conf. on Performance, Computing, and Communications, Phoenix, USA, Apr., 2001, pp. 701-706.
  9. Y. Moon, Y. Bae, and S. Roh, "A Study on Implementation of Zigbee Module based on CC520," J. of the Korea Institute of Electronic Communication Science, vol. 5, no. 3, 2010, pp. 332-338.