DOI QR코드

DOI QR Code

Determination of Antibiotic Residues: II. Extraction and Clean-up Methods for Liquid Samples_A Review

시료 중 잔류 항생제 분석 방법: II. 액상 시료 전처리 방법

  • Kim, Chansik (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Ryu, Hong-Duck (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Chung, Eu Gene (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Kim, Yongseok (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Rhew, Doug Hee (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research)
  • 김찬식 (국립환경과학원 물환경연구부 유역총량연구과) ;
  • 류홍덕 (국립환경과학원 물환경연구부 유역총량연구과) ;
  • 정유진 (국립환경과학원 물환경연구부 유역총량연구과) ;
  • 김용석 (국립환경과학원 물환경연구부 유역총량연구과) ;
  • 류덕희 (국립환경과학원 물환경연구부 유역총량연구과)
  • Received : 2016.07.11
  • Accepted : 2016.11.21
  • Published : 2016.11.30

Abstract

Increased attention has been paid to the presence of veterinary antibiotics in various environmental matrices due to their toxicological behavior in the ecosystem and development of antibiotic-resistant strains of pathogenic bacteria. In the this review, 37 target antimicrobials were selected based on annual sales of antibiotics for livestock in South Korea 2014. Also, extraction and clean-up methods for the determination of the antibiotic residues in liquid samples including water, milk, and honey were comprehensively reviewed in the literature. Solid-phase extraction (SPE) was commonly used as a pre-treatment method for the samples. Most of the analytes were extracted in acidic conditions (2.5~4.0) except for aminoglycosides, which were extracted in neutral conditions (7.0~8.0). ${\beta}-Lactams$ showed the highest recoveries in neutral pH due to their degradation characteristics in acidic media. Starta-X, Oasis HLB, and Oasis MCX were frequently applied as an SPE cartridge and Oasis HLB showed the highest recoveries for the majority of antibiotic classes. The homogenized honey and milk were extracted by mixing with acids for deproteinization. Solids and other interfering substances in the extract were eliminated by centrifugation followed by membrane filtration or SPE before injection into HPLC.

Keywords

References

  1. Adams, C., Wang, Y., Lofin, K., and Meyer, M. (2002). Removal of Antibiotics from Surface and Distilled Water in Conventional Water Treatment Process, Journal of Environmental Engineering, 128(3), pp. 253-260. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:3(253)
  2. Amelin, V. G. and Timofeev, A. A. (2016). Identification and Determination of Mycotoxins and Food Additives in Feed by HPLC-High-Resolution Time-of-Flight Mass Spectrometry, Journal of Analytical Chemistry, 71(4), pp. 401-417.
  3. Andersson, D. I. and Hughes, D. (2014). Microbiological Effects of Sublethal Levels of Antibiotics, Nature Reviews Microbiology, 12(7), pp. 465-478. https://doi.org/10.1038/nrmicro3270
  4. Behera, S. K., Kim, H. W., Oh, J. E., and Park, H. S. (2011). Occurrence and Removal of Antibiotics, Hormones and Several Other Pharmaceuticals in Wastewater Treatment Plants of the Largest Industrial City of Korea, Science of the Total Environment, 409(20), pp. 4351-4360. https://doi.org/10.1016/j.scitotenv.2011.07.015
  5. Ben, W., Qiang, Z., Adams, C., Zhang, H., and Chen, L. (2008). Simultaneous Determination of Sulfonamides, Tetracyclines and Tiamulin in Swine Wastewater by Solid-Phase Extraction and Liquid Chromatography-Mass Spectrometry, Journal of Chromatography A, 1202(2), pp. 173-180. https://doi.org/10.1016/j.chroma.2008.07.014
  6. Berendsen, B. J., Gerritsen, H. W., Wegh, R. S., Lameris, S., van Sebille, R., Stolker, A. A., and Nielen, M. W. (2013). Comprehensive Analysis of ${\beta}$-Lactam Antibiotics Including Penicillins, Cephalosporins, and Carbapenems in Poultry Muscle Using Liquid Chromatography Coupled to Tandem Mass Spectrometry, Analytical and Bioanalytical Chemistry, 405(24), pp. 7859-7874. https://doi.org/10.1007/s00216-013-6804-6
  7. Biswal, B. K., Mazza, A., Masson, L., Gehr, R., and Frigon, D. (2014). Impact of Wastewater Treatment Processes on Antimicrobial Resistance Genes and Their Co-occurrence with Virulence Genes in Escherichia Coli, Water Research, 50, pp. 245-253. https://doi.org/10.1016/j.watres.2013.11.047
  8. Boleda, M. R., Alechaga, E., Moyano, E., Galceran, M. T., and Ventura, F. (2014). Survey of the Occurrence of Pharmaceuticals in Spanish Finished Drinking Waters, Environmental Science and Pollution Research, 21(18), pp. 10917- 10939. https://doi.org/10.1007/s11356-014-2885-9
  9. Bonnet, R. (2004). Growing Group of Extended-Spectrum ${\beta}$-Lactamases: the CTX-M Enzymes, Antimicrobial Agents and Chemotherapy, 48(1), pp. 1-14. https://doi.org/10.1128/AAC.48.1.1-14.2004
  10. Boscher, A., Guignard, C., Pellet, T., Hoffmann, L., and Bohn, T. (2010). Development of a Multi-Class Method for the Quantification of Veterinary Drug Residues in Feedingstuffs by Liquid Chromatography-Tandem Mass Spectrometry, Journal of Chromatography A, 1217(41), pp. 6394-6404. https://doi.org/10.1016/j.chroma.2010.08.024
  11. Bousova, K., Senyuva, H., and Mittendorf, K. (2013). Quantitative Multi-Residue Method for Determination Antibiotics in Chicken Meat Using Turbulent Flow Chromatography Coupled to Liquid Chromatography-Tandem Mass Spectrometry, Journal of Chromatography A, 1274, pp. 19-27. https://doi.org/10.1016/j.chroma.2012.11.067
  12. Calamari, D., Zuccato, E., Castiglioni, S., Bagnati, R., and Fanelli, R. (2003). Strategic Survey of Therapeutic Drugs in the Rivers Po and Lambro in Northern Italy, Environmental Science and Technology, 37(7), pp. 1241-1248. https://doi.org/10.1021/es020158e
  13. Castiglioni, S., Bagnati, R., Calamari, D., Fanelli, R., and Zuccato, E. (2005). A Multiresidue Analytical Method Using Solid-Phase Extraction and High-Pressure Liquid Chromatography Tandem Mass Spectrometry to Measure Pharmaceuticals of Different Therapeutic Classes in Urban Wastewaters, Journal of Chromatography A, 1092(2), pp. 206-215. https://doi.org/10.1016/j.chroma.2005.07.012
  14. Cha, J. M., Yang, S., and Carlson, K. H. (2006). Trace Determination of ${\beta}$-Lactam Antibiotics in Surface Water and Urban Wastewater Using Liquid Chromatography Combined with Electrospray Tandem Mass Spectrometry, Journal of Chromatography A, 1115(1), pp. 46-57. https://doi.org/10.1016/j.chroma.2006.02.086
  15. Chander, Y., Oliveira, S., and Goyal S. M. (2011). Characterisation of Ceftiofur Resistance in Swine Bacterial Pathogens, The Veterinary Journal, 187(1), pp. 139-141. https://doi.org/10.1016/j.tvjl.2009.10.013
  16. Chen, H. and Zhang, M. (2013). Effects of Advanced Treatment Systems on the Removal of Antibiotic Resistance Genes in Wastewater Treatment Plants from Hangzhou, China, Environmental Science & Technology, 47, pp. 8157-8163.
  17. Chitescu, C. L., Kaklamanos, G., Nicolau, A. I., and Stolker, A. A. M. L. (2015). High Sensitive Multiresidue Analysis of Pharmaceuticals and Antifungals in Surface Water Using UHPLC-Q-Exactive Orbitrap HRMS. Application to the Danube River Basin on the Romanian Territory, Science of The Total Environment, 532, pp. 501-511. https://doi.org/10.1016/j.scitotenv.2015.06.010
  18. Christian T., Schneider, R. J., Farber, H. A., Skutlarek, D., Meyer, M. T., and Goldbach, H. E. (2003). Determination of Antibiotic Residues in Manure, Soil, and Surface Waters, Acta Hydrochimica et Hydrobiologica, 31(1), pp. 36-44. https://doi.org/10.1002/aheh.200390014
  19. Dahmen, S., Mansour, W., Charfi, K., Boujaafar, N., Arlet, G., and Bouallegue, O. (2012). Imipenem Resistance in Klebsiella Pneumoniae is Associated to the Combination of Plasmid-Mediated CMY-4 AmpC ${\beta}$-Lactamase and Loss of an Outer Membrane Protein, Microbial Drug Resistance, 18(5), pp. 479-483. https://doi.org/10.1089/mdr.2011.0214
  20. De Alwis, H. and Heller, D. H. (2010). Multiclass, Multiresidue Method for the Detection of Antibiotic Residues in Distillers Grains by Liquid Chromatography and Ion Trap Tandem Mass Spectrometry, Journal of Chromatography A, 1217(18), pp. 3046-3084.
  21. Diaz-Cruz, M. S. and Barcelo, D. (2006). Determination of Antimicrobial Residues and Metabolites in the Aquatic Environment by Liquid Chromatography Tandem Mass Spectrometry, Analytical and Bioanalytical Chemistry, 386(4), pp. 973-985. https://doi.org/10.1007/s00216-006-0444-z
  22. Dolliver, H., Gupta, S., and Noll, S. (2008). Antibiotic Degradation During Manure Composting, Journal of Environmental Quality, 37(3) pp. 1245-1253. https://doi.org/10.2134/jeq2007.0399
  23. Donato, F. F., Kemmerich, M., Facco, J. F., Friggi, C. A., Prestes, O. D., Adaime, M. B., and Zanella, R. (2012). Simultaneous Determination of Pesticide and Antibiotic Residues at Trace Levels in Water Samples by SPE and LC-MS/MS, Brazilian Journal of Analytical Chemistry, 7, pp. 331-340.
  24. Dutil, L., Irwin, R., Finley, R., Ng, L. K., Avery, B., Boerlin, P., Bourgault, A., Cole, L., Daignault, D., Desruisseau, A., Demczuk, W., Hoang, L., Horsman, G. B., Ismail, J., Jamieson, F., Maki, A., Pacagnella, A., and Pillai, D. R. (2010). Ceftiofur Resistance in Salmonella Enterica Serovar Heidelberg from Chicken Meat and Humans, Canada, Emerging Infectious Diseases, 16(1), pp. 48-54. https://doi.org/10.3201/eid1601.090729
  25. Evaggelopoulou, E. N. and Samanidou, V. F. (2013). Development and Validation of an HPLC Method for the Determination of Six Penicillin and Three Amphenicol Antibiotics in Gilthead Seabream (Sparus Aurata) Tissue According to the European Union Decision 2002/657/EC, Food Chemistry, 136(3), pp. 1322-1329. https://doi.org/10.1016/j.foodchem.2012.09.044
  26. Ewers, C., Grobbel, M., Stamm, I., Kopp, P. A., Diehl, I., Semmler, T., Fruth, A., Beutlich, J., Guerra, B., Wieler, L. H., and Guenther, S. (2010). Emergence of Human Pandemic O25:H4-ST131 CTX-M-15 Extended-Spectrum-${\beta}$-Lactamase-Producing Escherichia coli among Companion Animals, Journal of Antimicrobial Chemotherapy, 65(4), pp. 651-660. https://doi.org/10.1093/jac/dkq004
  27. Ischbach, M. A., and Walsh, C. T. (2009). Antibiotics for Emerging Pathogens, Science, 325(5944), pp. 1089-1093. https://doi.org/10.1126/science.1176667
  28. Fram, M. S. and Belitz, K. (2011). Occurrence and Concentrations of Pharmaceutical Compounds in Groundwater Used for Public Drinking-Water Supply in California, Science of the Total Environment, 409(18), pp. 3409-3417. https://doi.org/10.1016/j.scitotenv.2011.05.053
  29. Franciolli, M., Bille, J., Glauser, M. P., and Moreillon P. (1991). ${\beta}$-Lactam Resistance Mechanisms of Methicillin-Resistant Staphylococcus Aureus, The Journal of Infectious Diseases, 163(3), pp. 514-522. https://doi.org/10.1093/infdis/163.3.514
  30. Gao, P., Ding, Y., Li, H., and Xagoraraki, I. (2012). Occurrence of Pharmaceuticals in a Municipal Wastewater Treatment Plant: Mass Balance and Removal Processes, Chemosphere, 88(1), pp. 17-24. https://doi.org/10.1016/j.chemosphere.2012.02.017
  31. Gorissen, B., Reyns, T., Devreese, M., De Backer, P., Van Loco, J., and Croubels, S. (2015). Determination of Selected Veterinary Antimicrobials in Poultry Excreta by UHPLC-MS/MS, for Application in Salmonella Control Programs, Analytical and Bioanalytical Chemistry, 407(15), pp. 4447-4457. https://doi.org/10.1007/s00216-014-8449-5
  32. Gros, M., Petrovic, M., and Barcelo, D. (2006). Development of Multi-Residue Analytical Methodology Based on Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for Screening and Trace Level Determination of Pharmaceuticals in Surface and Wastewaters, Talanta, 70(4), pp. 678-690. https://doi.org/10.1016/j.talanta.2006.05.024
  33. Gros, M., Rodriguze-Mozaz, S., and Barcelo, D. (2013). Rapid Analysis of Multiclass Antibiotic Residues and Some of Their Metabolites in Hospital, Urban Wastewater and River Water by Ultra-High-Performance Liquid Chromatography Coupled to Quadrupole-Linear Ion Trap Tandem Mass Spectrometry, Journal of Chromatography A, 1292, pp. 173-188. https://doi.org/10.1016/j.chroma.2012.12.072
  34. Hasman, H., Mevius, D., Veldman, K., Olesen, I., and Aarestrup, F. M. (2005). ${\beta}$-Lactamases Among Extended-Spectrum ${\beta}$-Lactamase (ESBL)-Resistant Salmonella from Poultry, Poultry Products and Human Patients in The Netherlands, Journal of Antimicrobial Chemotherapy, 56(1), pp. 115-121. https://doi.org/10.1093/jac/dki190
  35. Hawkey, P. M. and Livemore, D. M. (2012). Carbapenem Antibiotics for Serious Infection, The BMJ, 344, pp. e3236. https://doi.org/10.1136/bmj.e3236
  36. Heberer, T. (2002). Occurrence, Fate, and Removal of Pharmaceutical Residues in the Aquatic Environment: A Review of Recent Research Data, Toxicology Letters, 131(1-2), pp. 5-17. https://doi.org/10.1016/S0378-4274(02)00041-3
  37. Hong, Y., Sharma, V. K., Chiang, P. C., and Kim, H. (2015). Fast-Target Analysis and Hourly Variation of 60 Pharmaceuticals in Wastewater Using UPLC-High Resolution Mass Spectrometry. Archives of Environmental Contamination and Toxicology, 69 (4), pp. 525-534. https://doi.org/10.1007/s00244-015-0214-z
  38. Hur, J., Jawale, C., and Lee, J. H. (2012). Antimicrobial Resistance of Salmonella Isolated from Food Animals: A Review, Food Research International, 45(2), pp. 819-830. https://doi.org/10.1016/j.foodres.2011.05.014
  39. Iglesias, A., Nebot, C., Miranda, J. M., Vazquez, B. I., and Cepeda, A. (2012). Detection and Quantitative Analysis of 21 Veterinary Drugs in River Water Using High-Pressure Liquid Chromatography Coupled to Tandem Mass Spectrometry, Environmental Science and Pollution Research, 19(8), pp. 3235-3249. https://doi.org/10.1007/s11356-012-0830-3
  40. Jones, R. N. (2001). Resistance Patterns Among Nosocomial Pathogens: Trends Over the Past Few Years, Chest Journal, 119(2), pp. 397S-404S. https://doi.org/10.1378/chest.119.2_suppl.397S
  41. Karthikeyan, K. G. and Meyer, M. T. (2006). Occurrence of Antibiotics in Wastewater Treatment Facilities in Wisconsin, USA, Science of the Total Environment, 361(1), pp. 196-207. https://doi.org/10.1016/j.scitotenv.2005.06.030
  42. Kaufmann, A. and Maden, K. (2005). Determination of 11 Aminoglycosides in Meat and Liver by Liquid Chromatography with Tandem Mass Spectrometry, Journal of AOAC International, 88, pp. 1118-1125.
  43. Kim, S. C. and Carlson, K. (2007). Quantification of Human and Veterinary Antibiotics in Water and Sediment Using SPE/LC/MS/MS, Analytical and Bioanalytical Chemistry, 387(4), pp. 1301-1315. https://doi.org/10.1007/s00216-006-0613-0
  44. Kleywegt, S., Pileggi, V., Yang, P., Hao, C., Zhao, X., Rocks, C., Thach. S., Cheung, P., and Whitehead, B. (2011). Pharmaceuticals, Hormones and Bisphenol A in Untreated Source and Finished Drinking Water in Ontario, Canada-Occurrence and Treatment Efficiency, Science of the Total Environment, 409(8), pp. 1481-1488. https://doi.org/10.1016/j.scitotenv.2011.01.010
  45. Korea Ministry of Government Legislation. (2015). Act On The Management and Use of Livestock Excreta, 13526, Korea Ministry of Government Legislation.
  46. Kroker, R. (1983). Aspekte zur Ausscheidung Antimikrobiell Wirksamer Substanzen nach der Chemotherapeutischen Behandlung von Nutztieren, Wiss Umwelt, 4, pp. 305-308.
  47. Lim, S. K., Moon, D. C., Joo, I. S., Kim, Y. H., Jang, G. C., Lee, H. S., Lee, J. E., Jang, S. C., Gwak, H. S., Kim, H. Y., Kim, J. W., Jung, Y. G., Park, Y. J., Kim, S. R., Jung, S. K., and Jang, J. H. (2015). National Monitoring of Antibiotic Usage and Resistance in 2014: Livestock and Food of Animal Origin, 11-1543061-000142-01, Ministry of Agriculture and Ministry, Food and Rural Affairs, pp. 13-17. [Korean Literature]
  48. Lindberg, R., Jamheimer, P. A., Olsen, B., Johanssen, M., and Tysklind, M. (2004). Determination of Antibiotic Substances in Hospital Sewage Water Using Solid-Phase Extraction and Liquid Chromatography/Mass Spectrometry and Group Analogue Internal Standards, Chemosphere, 57(10), pp. 1479-1488. https://doi.org/10.1016/j.chemosphere.2004.09.015
  49. Liu, J. L. and Wong, M. H. (2013). Pharmaceuticals and Personal Care Products (PPCPs):A Review on Environmental Contamination in China, Environment International, 59, pp. 208-224. https://doi.org/10.1016/j.envint.2013.06.012
  50. Loffler, D. and Ternes, T. A. (2003), Analytical Method for the Determination of the Aminoglycoside Gentamicin in Hospital Wastewater via Liquid Chromatography-Electrospray-Tandem Mass Spectrometry, Journal of Chromatography A, 1000(1), pp. 583-588. https://doi.org/10.1016/S0021-9673(03)00059-1
  51. Lopes, R. P., Reyes, R. C., Romero-Gonzalez, R., Vidal, J. L. M., and Frenich, A. G. (2012). Multiresidue Determination of Veterinary Drugs in Aquaculture Fish Samples by Ultra High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry, Journal of Chromatography B, 895, pp. 39-47.
  52. Lopez, B., Ollivier, P., Togola, A., Baran, N., and Ghestem, J. P. (2015). Screening of French Groundwater for Regulated and Emerging Contaminants, Science of The Total Environment, 518, pp. 562-573.
  53. Leung, H. W., Jin, L., Wei, S., Tsui, M. M. P., Zhou, B., Jiao, L., Cheung, P. C., Chun, Y. K., Murphy, M. B., and Lam, P. K. S. (2013). Pharmaceuticals in Tap Water: Human Health Risk Assessment and Proposed Monitoring Framework in China, Environmental Health Perspectives, 121(7), pp. 839-846. https://doi.org/10.1289/ehp.1206244
  54. Malchi, T., Maor, Y., Tadmor, G., Shenker, M., and Chefetz, B. (2014). Irrigation of Root Vegetables with Treated Wastewater: Evaluating Uptake of Pharmaceuticals and the Associated Human Health Risks, Environmental Science & Technology, 48(16), pp. 9325-9333. https://doi.org/10.1021/es5017894
  55. Martinez-Carballo, E., Gonzalez-Barreiro, C., Scharf, S., and Gans, O. (2007). Environmental Monitoring Study of Selected Veterinary Antibiotics in Animal Manure and Soils in Austria, Environmental Pollution, 148(2), pp. 570-579. https://doi.org/10.1016/j.envpol.2006.11.035
  56. Martinez-Villalba, A., Moyano, E., and Galceran, M. T. (2009). Fast Liquid Chromatography/Multiple-Stage Mass Spectrometry of Coccidiostats, Rapid Communications in Mass Spectrometry, 23(9), pp. 1255-1263. https://doi.org/10.1002/rcm.3997
  57. McArdell, C. S., Molnar, E., Suter,M. J. F., and Giger, W. (2003). Occurrence and Fate o Macrolide Antibiotics in Wastewater Treatment Plants and in the Glatt Valley Watershed, Switzerland, Environmental Science & Technology, 37(24), pp. 5479-5486. https://doi.org/10.1021/es034368i
  58. Miao, X. S., Bishay, F., Chen, M., and Metcalfe, C. D. (2004). Occurrence of Antimicrobials in the Final Effluents of Wastewater Treatment Plants in Canada, Environmental Science and Technology, 38(13), pp. 3533-3541. https://doi.org/10.1021/es030653q
  59. Migliore, L., Civitareale, C., Cozzolino, S., Casoria, P., Brambilla, G., and Gaudio, L. (1998). Laboratory Models to Evaluate Phytotoxicity of Sulphadimethoxine on Terrestrial Plants, Chemosphere, 37(14), pp.2957-2961. https://doi.org/10.1016/S0045-6535(98)00336-1
  60. Migliore, L., Cozzolino, S., and Fiori, M. (2003). Phytotoxicity to and Uptake of Enrofloxacin in Crop Plants, Chemosphere, 52(7), pp.1233-1244. https://doi.org/10.1016/S0045-6535(03)00272-8
  61. Nebot, C., Iglesias, A., Regal, P., Miranda, J., Cepeda, A., and Fente, C. (2012). Development of a Multi-Class Method for the Identification and Quantification of Residues of Antibiotics, Coccidiostats and Corticoseteroids in Milk by Liquid Chromatography-Tandem Mass Spectrometry, International Dairy Journal, 22(1), pp. 78-85. https://doi.org/10.1016/j.idairyj.2011.09.001
  62. Neu, H. C. (1992). The Crisis in Antibiotic Resistance, Science, 257(5073), pp. 1064-1073. https://doi.org/10.1126/science.257.5073.1064
  63. Nordmann, P., Dortet, L., and Poirel, L. (2012). Carbapenem Resistance in Enterobacteriaceae: Here Is the Storm!, Trends in molecular medicine, 18(5), pp. 263-272. https://doi.org/10.1016/j.molmed.2012.03.003
  64. Oliver, S. P., Murinda, S. E., and Jayarao, B. M. (2011). Impact of Antibiotic Use in Adult Dairy Cows on Antimicrobial Resistance of Veterinary and Human Pathogens: A Comprehensive Review, Foodborne Pathogens and Disease, 8(3), pp. 337-355. https://doi.org/10.1089/fpd.2010.0730
  65. Persoons, D., Haesebrouck, F., Smet, A., Herman, L., Heyndrickx, M., Martel, A., Catry, B., Berge, A. C., Butaye, P., and Dewulf, J. (2011). Risk Factors for Ceftiofur Resistance in Escherichia Coli from Belgian Broilers, Epidemiology & Infection, 139(5), pp. 765-771. https://doi.org/10.1017/S0950268810001524
  66. Petrovic, M., Gonzalez, S., and Barcelo, D. (2003). Analysis and Removal of Emerging Contaminants in Wastewater and Drinking Water, TrAC Trends in Analytical Chemistry, 22(10), pp. 685-696. https://doi.org/10.1016/S0165-9936(03)01105-1
  67. Petrovic, M., Hemando, M. D., Diaz-Cruz, M. S., and Barcelo, D. (2005). Liquid Chromatography-Tandem Mass Spectrometry for the Analysis of Pharmaceutical Residues in Environmental Sample: a Review, Journal of Chromatography A, 1067(1-2), pp. 1-14. https://doi.org/10.1016/j.chroma.2004.10.110
  68. Pfeifer, Y., Cullik, A., and Witte, W. (2010). Resistance to Cephalosporins and Carbapenems in Gram-Negative Bacterial Pathogens, International Journal of Medical Microbiology, 300 (6), pp. 371-379. https://doi.org/10.1016/j.ijmm.2010.04.005
  69. Pietruk, K., Olejink, M., Jedziniak, P., and Szprengier-Juszkiewicz, T. (2015). Determination of Fifteen Coccidiostats in Feed at Carry-Over Levels Using Liquid Chromatography-Mass Spectrometry, Journal of Pharmaceutical and Biomedical Analysis, 112, pp. 50-59. https://doi.org/10.1016/j.jpba.2015.03.019
  70. Pomati, F., Orlandi, C., Clerici, M., Luciani, F., and Zuccato, E. (2008). Effects and Interactions in an Environmentally Relevant Mixture of Pharmaceuticals, Toxicological Sciences, 102 (1), pp. 129-137. https://doi.org/10.1093/toxsci/kfm291
  71. Pozo, O. J., Guerrero, C., Sancho, J. V., Ibanez, M., Pitarch, E., Hogendoorn, E., and Hernandez, F. (2006). Efficient Approach for the Reliable Quantification and Confirmation of Antibiotics in Water Using On-Line Solid-Phase Extraction Liquid Chromatography/Tandem Mass Spectrometry, Journal of Chromatography A, 1103(1), pp. 83-93. https://doi.org/10.1016/j.chroma.2005.10.073
  72. Rahman, M. F., Yanful, E. K., and Jasim, S. Y. (2009). Endocrine Disrupting Compounds(EDCs) and Pharmaceuticals and Personal Care Products (PPCPs) in the Aquatic Environment: Implications for the Drinking Water Industry and Global Environmental Health, Journal of Water and Health, 7(2), pp. 224-243. https://doi.org/10.2166/wh.2009.021
  73. Santiago-Rodriguez, T. M., Rivera, J. I., Coradin, M., and Toranzos, G. A. (2013). Antibiotic-resistance and Virulence Genes in Enterococcus Isolated from Tropical Recreational Waters, Journal of Water and Health, pp.387-396.
  74. Sarmah, A. K., Meyer, M. T., and Boxall, A. B. A. (2006). A Global Perspective on the Use, Sales, Exposure Pathways, Occurrence, Fate and Effects of Veterinary Antibiotics (VAs) in the Environment, Chemosphere, 65(5), pp. 725-759. https://doi.org/10.1016/j.chemosphere.2006.03.026
  75. Schlusener, M. P., Con Arb, M. A., and Bester, K. (2006), Elimination of Macrolides Tiamulin and, Salinomycin During Manure Storage, Archives of Environmental Contamination and Toxicology, 51(1), pp. 21-28. https://doi.org/10.1007/s00244-004-0240-8
  76. Seifrtova, M., Novakova, L., Lino, C., Pena, A., and Solich, P. (2009). An Overview of Analytical Methodologies for the Determination of Antibiotics in Environmental Waters, Analytica Chimica Acta, 649(2), pp. 158-179. https://doi.org/10.1016/j.aca.2009.07.031
  77. Shelver, W. L., Hakk, H., Larsen, G. L., DeSutter, T. M., and Casey, F. X. M. (2010). Development of an Ultra-High-Pressure Liquid Chromatography-Tandem Mass Spectrometry Multi-Residue Sulfonamide Method and Its Application to Water, Manure Slurry, and Soils from Swine Rearing Facilities, Journal of Chromatography A, 1217(8), pp. 1273-1282. https://doi.org/10.1016/j.chroma.2009.12.034
  78. Simazaki, D., Kubota, R., Suzuki, T., Akiba, M., Nishimura, T., and Kunikane, S. (2015). Occurrence of Selected Pharmaceuticals at Drinking Water Purification Plants in Japan and Implications for Human Health, Water Research, 76(1), pp. 187-200. https://doi.org/10.1016/j.watres.2015.02.059
  79. Shin, H. S., Kim, G. G., Shin, Y. J., Kim, H. J., Oh, J. A., Lim, H. H., Yang, E. Y., Cho, Y. H., Shin, J. H., Choi, Y. H., Kwon, E. H., Hong, S. Y., Park, J. M., and Yu, I. J. (2012). The Study on Analytical Methods for Pharmaceutical Residues and Their Occurrence(V), Kongju National University, pp. 21-49.
  80. Sorensen, L. K. and Elbaek, T. H. (2004). Simultaneous Determination of Trimethoprim, Sulfadiazine, Florfenicol and Oxolinic Acid in Surface Water by Liquid Chromatography Tandem Mass Spectrometry, Chromatographia, 60(5-6), pp. 287-291. https://doi.org/10.1365/s10337-004-0383-9
  81. Straus, S. K. and Hancock, R. E. (2006). Mode of Action of the New Antibiotic for Gram-Positive Pathogens Daptomycin: Comparison with Cationic Antimicrobial Peptides and Lipopeptides, Biochimica et Biophysica Acta(BBA)-Biomembranes, 1758(9), pp. 1215-1223. https://doi.org/10.1016/j.bbamem.2006.02.009
  82. Tao, Y., Chen, D., Yu, H., Huang, L., Liu, Z., Cao, X., Yan, C., Pan, Y., Liu, Z., and Yuan, Z. (2012). Simultaneous Determination of 15 Aminoglycoside (s) Residues in Animal Derived Foods by Automated Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry, Food Chemistry, 135 (2), pp. 676-683. https://doi.org/10.1016/j.foodchem.2012.04.086
  83. Thiele-Bruhn, S. (2003). Pharmaceutical Antibiotic Compounds in Soils - a Review, Journal of Plant Nutrition and Soil Science, 166(2), pp. 145-167. https://doi.org/10.1002/jpln.200390023
  84. Tolls, J. (2001). Sorption of Veterinary Pharmaceuticals in Soils: A Review, Environmental Science & Technology, 35(17), pp. 3397-3406. https://doi.org/10.1021/es0003021
  85. United States Environmental Protection Agency (U. S. EPA.). (2007). Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS, EPA-821-R-08-002, U.S. Environmental Protection Agency. Washington, DC.
  86. van Bruijnsvoort, M., Ottink, S. J., Jonker, K. M., and de Boer, E. (2004). Determination of Streptomycin and Dihydrostreptomycin in Milk and Honey by Liquid Chromatography with Tandem Mass Spectrometry, Journal of Chromatography A, 1058(1), pp. 137-142. https://doi.org/10.1016/S0021-9673(04)01307-X
  87. Wan, E. C. H., Ho, C., Sin, D. W. M., and Wong, Y. C. (2006). Detection of Residual Bacitracin A, Colistin A, and Colistin B in Milk and Animal Tissues by Liquid Chromatography Tandem Mass Spectrometry, Analytical and Bioanalytical Chemistry, 385(1), pp. 181-188. https://doi.org/10.1007/s00216-006-0325-5
  88. Wegener, H. C., Aarestrup, F. M., Jensen, L. B., Hammerum, A. M., and Bager, F. (1999). Use of Antimicrobial Growth Promoters in Food Animals and Enterococcus Faecium Resistance to Therapeutic Antimicrobial Drugs in Europe, Emerging Infectious Diseases, 5(3), pp. 329-335. https://doi.org/10.3201/eid0503.990303
  89. Wu, C., Huang, X., Witter, J. D., Spongberg, A. L., Wang, K., Wang, D., and Liu, J. (2014). Occurrence of Pharmaceuticals and Personal Care Products and Associated Environmental Risks in the Central and Lower Yangtze River, China, Ecotoxycology and Environmental Safety, 106, pp. 19-26. https://doi.org/10.1016/j.ecoenv.2014.04.029
  90. Xu, Y., Tian, X., Ren, C., Huang, H., Zhang, X., Gong, X., Liu, H., Yu, Z., and Zhang, L. (2012). Analysis of Colistin A and B in Fishery Products by Ultra Performance Liquid Chromatography with Positive Electrospray Ionization Tandem Mass Spectrometry, Journal of Chromatography B, 899, pp. 14-20. https://doi.org/10.1016/j.jchromb.2012.04.028
  91. Zhou, L. J., Ying, G. G., Liu, S., Zhao, J. L., Chen, F., Zhang, R. Q., Peng, F. Q., and Zhang, Q. Q. (2012). Simultaneous Determination of Human and Veterinary Antibiotics in Various Environmental Matrices by Rapid Resolution Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry, Journal of Chromatography A, 1244, pp. 123-138. https://doi.org/10.1016/j.chroma.2012.04.076
  92. Zhu, W. X., Yang, J. Z., Wei, W., Liu, Y. F., and Zhang, S. S. (2008). Simultaneous Determination of 13 Aminoglycoside Residues in Foods of Animal Origin by Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry with Two Consecutive Solid-Phase Extraction Steps, Journal of Chromatography A, 1207(1), pp. 29-37. https://doi.org/10.1016/j.chroma.2008.08.033