Browse > Article
http://dx.doi.org/10.15681/KSWE.2016.32.6.628

Determination of Antibiotic Residues: II. Extraction and Clean-up Methods for Liquid Samples_A Review  

Kim, Chansik (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research)
Ryu, Hong-Duck (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research)
Chung, Eu Gene (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research)
Kim, Yongseok (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research)
Rhew, Doug Hee (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research)
Publication Information
Abstract
Increased attention has been paid to the presence of veterinary antibiotics in various environmental matrices due to their toxicological behavior in the ecosystem and development of antibiotic-resistant strains of pathogenic bacteria. In the this review, 37 target antimicrobials were selected based on annual sales of antibiotics for livestock in South Korea 2014. Also, extraction and clean-up methods for the determination of the antibiotic residues in liquid samples including water, milk, and honey were comprehensively reviewed in the literature. Solid-phase extraction (SPE) was commonly used as a pre-treatment method for the samples. Most of the analytes were extracted in acidic conditions (2.5~4.0) except for aminoglycosides, which were extracted in neutral conditions (7.0~8.0). ${\beta}-Lactams$ showed the highest recoveries in neutral pH due to their degradation characteristics in acidic media. Starta-X, Oasis HLB, and Oasis MCX were frequently applied as an SPE cartridge and Oasis HLB showed the highest recoveries for the majority of antibiotic classes. The homogenized honey and milk were extracted by mixing with acids for deproteinization. Solids and other interfering substances in the extract were eliminated by centrifugation followed by membrane filtration or SPE before injection into HPLC.
Keywords
Extraction; LC-MS/MS; Liquid sample; Pre-treatment; Veterinary antibiotic residues;
Citations & Related Records
연도 인용수 순위
  • Reference
1 United States Environmental Protection Agency (U. S. EPA.). (2007). Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS, EPA-821-R-08-002, U.S. Environmental Protection Agency. Washington, DC.
2 van Bruijnsvoort, M., Ottink, S. J., Jonker, K. M., and de Boer, E. (2004). Determination of Streptomycin and Dihydrostreptomycin in Milk and Honey by Liquid Chromatography with Tandem Mass Spectrometry, Journal of Chromatography A, 1058(1), pp. 137-142.   DOI
3 Wan, E. C. H., Ho, C., Sin, D. W. M., and Wong, Y. C. (2006). Detection of Residual Bacitracin A, Colistin A, and Colistin B in Milk and Animal Tissues by Liquid Chromatography Tandem Mass Spectrometry, Analytical and Bioanalytical Chemistry, 385(1), pp. 181-188.   DOI
4 Persoons, D., Haesebrouck, F., Smet, A., Herman, L., Heyndrickx, M., Martel, A., Catry, B., Berge, A. C., Butaye, P., and Dewulf, J. (2011). Risk Factors for Ceftiofur Resistance in Escherichia Coli from Belgian Broilers, Epidemiology & Infection, 139(5), pp. 765-771.   DOI
5 Petrovic, M., Gonzalez, S., and Barcelo, D. (2003). Analysis and Removal of Emerging Contaminants in Wastewater and Drinking Water, TrAC Trends in Analytical Chemistry, 22(10), pp. 685-696.   DOI
6 Petrovic, M., Hemando, M. D., Diaz-Cruz, M. S., and Barcelo, D. (2005). Liquid Chromatography-Tandem Mass Spectrometry for the Analysis of Pharmaceutical Residues in Environmental Sample: a Review, Journal of Chromatography A, 1067(1-2), pp. 1-14.   DOI
7 Pfeifer, Y., Cullik, A., and Witte, W. (2010). Resistance to Cephalosporins and Carbapenems in Gram-Negative Bacterial Pathogens, International Journal of Medical Microbiology, 300 (6), pp. 371-379.   DOI
8 Pozo, O. J., Guerrero, C., Sancho, J. V., Ibanez, M., Pitarch, E., Hogendoorn, E., and Hernandez, F. (2006). Efficient Approach for the Reliable Quantification and Confirmation of Antibiotics in Water Using On-Line Solid-Phase Extraction Liquid Chromatography/Tandem Mass Spectrometry, Journal of Chromatography A, 1103(1), pp. 83-93.   DOI
9 Pietruk, K., Olejink, M., Jedziniak, P., and Szprengier-Juszkiewicz, T. (2015). Determination of Fifteen Coccidiostats in Feed at Carry-Over Levels Using Liquid Chromatography-Mass Spectrometry, Journal of Pharmaceutical and Biomedical Analysis, 112, pp. 50-59.   DOI
10 Pomati, F., Orlandi, C., Clerici, M., Luciani, F., and Zuccato, E. (2008). Effects and Interactions in an Environmentally Relevant Mixture of Pharmaceuticals, Toxicological Sciences, 102 (1), pp. 129-137.   DOI
11 Rahman, M. F., Yanful, E. K., and Jasim, S. Y. (2009). Endocrine Disrupting Compounds(EDCs) and Pharmaceuticals and Personal Care Products (PPCPs) in the Aquatic Environment: Implications for the Drinking Water Industry and Global Environmental Health, Journal of Water and Health, 7(2), pp. 224-243.   DOI
12 Zhu, W. X., Yang, J. Z., Wei, W., Liu, Y. F., and Zhang, S. S. (2008). Simultaneous Determination of 13 Aminoglycoside Residues in Foods of Animal Origin by Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry with Two Consecutive Solid-Phase Extraction Steps, Journal of Chromatography A, 1207(1), pp. 29-37.   DOI
13 Wegener, H. C., Aarestrup, F. M., Jensen, L. B., Hammerum, A. M., and Bager, F. (1999). Use of Antimicrobial Growth Promoters in Food Animals and Enterococcus Faecium Resistance to Therapeutic Antimicrobial Drugs in Europe, Emerging Infectious Diseases, 5(3), pp. 329-335.   DOI
14 Wu, C., Huang, X., Witter, J. D., Spongberg, A. L., Wang, K., Wang, D., and Liu, J. (2014). Occurrence of Pharmaceuticals and Personal Care Products and Associated Environmental Risks in the Central and Lower Yangtze River, China, Ecotoxycology and Environmental Safety, 106, pp. 19-26.   DOI
15 Liu, J. L. and Wong, M. H. (2013). Pharmaceuticals and Personal Care Products (PPCPs):A Review on Environmental Contamination in China, Environment International, 59, pp. 208-224.   DOI
16 Loffler, D. and Ternes, T. A. (2003), Analytical Method for the Determination of the Aminoglycoside Gentamicin in Hospital Wastewater via Liquid Chromatography-Electrospray-Tandem Mass Spectrometry, Journal of Chromatography A, 1000(1), pp. 583-588.   DOI
17 Lopes, R. P., Reyes, R. C., Romero-Gonzalez, R., Vidal, J. L. M., and Frenich, A. G. (2012). Multiresidue Determination of Veterinary Drugs in Aquaculture Fish Samples by Ultra High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry, Journal of Chromatography B, 895, pp. 39-47.
18 Xu, Y., Tian, X., Ren, C., Huang, H., Zhang, X., Gong, X., Liu, H., Yu, Z., and Zhang, L. (2012). Analysis of Colistin A and B in Fishery Products by Ultra Performance Liquid Chromatography with Positive Electrospray Ionization Tandem Mass Spectrometry, Journal of Chromatography B, 899, pp. 14-20.   DOI
19 Zhou, L. J., Ying, G. G., Liu, S., Zhao, J. L., Chen, F., Zhang, R. Q., Peng, F. Q., and Zhang, Q. Q. (2012). Simultaneous Determination of Human and Veterinary Antibiotics in Various Environmental Matrices by Rapid Resolution Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry, Journal of Chromatography A, 1244, pp. 123-138.   DOI
20 Santiago-Rodriguez, T. M., Rivera, J. I., Coradin, M., and Toranzos, G. A. (2013). Antibiotic-resistance and Virulence Genes in Enterococcus Isolated from Tropical Recreational Waters, Journal of Water and Health, pp.387-396.
21 Shin, H. S., Kim, G. G., Shin, Y. J., Kim, H. J., Oh, J. A., Lim, H. H., Yang, E. Y., Cho, Y. H., Shin, J. H., Choi, Y. H., Kwon, E. H., Hong, S. Y., Park, J. M., and Yu, I. J. (2012). The Study on Analytical Methods for Pharmaceutical Residues and Their Occurrence(V), Kongju National University, pp. 21-49.
22 Sarmah, A. K., Meyer, M. T., and Boxall, A. B. A. (2006). A Global Perspective on the Use, Sales, Exposure Pathways, Occurrence, Fate and Effects of Veterinary Antibiotics (VAs) in the Environment, Chemosphere, 65(5), pp. 725-759.   DOI
23 Schlusener, M. P., Con Arb, M. A., and Bester, K. (2006), Elimination of Macrolides Tiamulin and, Salinomycin During Manure Storage, Archives of Environmental Contamination and Toxicology, 51(1), pp. 21-28.   DOI
24 Seifrtova, M., Novakova, L., Lino, C., Pena, A., and Solich, P. (2009). An Overview of Analytical Methodologies for the Determination of Antibiotics in Environmental Waters, Analytica Chimica Acta, 649(2), pp. 158-179.   DOI
25 Shelver, W. L., Hakk, H., Larsen, G. L., DeSutter, T. M., and Casey, F. X. M. (2010). Development of an Ultra-High-Pressure Liquid Chromatography-Tandem Mass Spectrometry Multi-Residue Sulfonamide Method and Its Application to Water, Manure Slurry, and Soils from Swine Rearing Facilities, Journal of Chromatography A, 1217(8), pp. 1273-1282.   DOI
26 Simazaki, D., Kubota, R., Suzuki, T., Akiba, M., Nishimura, T., and Kunikane, S. (2015). Occurrence of Selected Pharmaceuticals at Drinking Water Purification Plants in Japan and Implications for Human Health, Water Research, 76(1), pp. 187-200.   DOI
27 Sorensen, L. K. and Elbaek, T. H. (2004). Simultaneous Determination of Trimethoprim, Sulfadiazine, Florfenicol and Oxolinic Acid in Surface Water by Liquid Chromatography Tandem Mass Spectrometry, Chromatographia, 60(5-6), pp. 287-291.   DOI
28 Thiele-Bruhn, S. (2003). Pharmaceutical Antibiotic Compounds in Soils - a Review, Journal of Plant Nutrition and Soil Science, 166(2), pp. 145-167.   DOI
29 Straus, S. K. and Hancock, R. E. (2006). Mode of Action of the New Antibiotic for Gram-Positive Pathogens Daptomycin: Comparison with Cationic Antimicrobial Peptides and Lipopeptides, Biochimica et Biophysica Acta(BBA)-Biomembranes, 1758(9), pp. 1215-1223.   DOI
30 Tao, Y., Chen, D., Yu, H., Huang, L., Liu, Z., Cao, X., Yan, C., Pan, Y., Liu, Z., and Yuan, Z. (2012). Simultaneous Determination of 15 Aminoglycoside (s) Residues in Animal Derived Foods by Automated Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry, Food Chemistry, 135 (2), pp. 676-683.   DOI
31 Nordmann, P., Dortet, L., and Poirel, L. (2012). Carbapenem Resistance in Enterobacteriaceae: Here Is the Storm!, Trends in molecular medicine, 18(5), pp. 263-272.   DOI
32 Tolls, J. (2001). Sorption of Veterinary Pharmaceuticals in Soils: A Review, Environmental Science & Technology, 35(17), pp. 3397-3406.   DOI
33 Nebot, C., Iglesias, A., Regal, P., Miranda, J., Cepeda, A., and Fente, C. (2012). Development of a Multi-Class Method for the Identification and Quantification of Residues of Antibiotics, Coccidiostats and Corticoseteroids in Milk by Liquid Chromatography-Tandem Mass Spectrometry, International Dairy Journal, 22(1), pp. 78-85.   DOI
34 Neu, H. C. (1992). The Crisis in Antibiotic Resistance, Science, 257(5073), pp. 1064-1073.   DOI
35 Oliver, S. P., Murinda, S. E., and Jayarao, B. M. (2011). Impact of Antibiotic Use in Adult Dairy Cows on Antimicrobial Resistance of Veterinary and Human Pathogens: A Comprehensive Review, Foodborne Pathogens and Disease, 8(3), pp. 337-355.   DOI
36 Heberer, T. (2002). Occurrence, Fate, and Removal of Pharmaceutical Residues in the Aquatic Environment: A Review of Recent Research Data, Toxicology Letters, 131(1-2), pp. 5-17.   DOI
37 Kroker, R. (1983). Aspekte zur Ausscheidung Antimikrobiell Wirksamer Substanzen nach der Chemotherapeutischen Behandlung von Nutztieren, Wiss Umwelt, 4, pp. 305-308.
38 Lim, S. K., Moon, D. C., Joo, I. S., Kim, Y. H., Jang, G. C., Lee, H. S., Lee, J. E., Jang, S. C., Gwak, H. S., Kim, H. Y., Kim, J. W., Jung, Y. G., Park, Y. J., Kim, S. R., Jung, S. K., and Jang, J. H. (2015). National Monitoring of Antibiotic Usage and Resistance in 2014: Livestock and Food of Animal Origin, 11-1543061-000142-01, Ministry of Agriculture and Ministry, Food and Rural Affairs, pp. 13-17. [Korean Literature]
39 Lindberg, R., Jamheimer, P. A., Olsen, B., Johanssen, M., and Tysklind, M. (2004). Determination of Antibiotic Substances in Hospital Sewage Water Using Solid-Phase Extraction and Liquid Chromatography/Mass Spectrometry and Group Analogue Internal Standards, Chemosphere, 57(10), pp. 1479-1488.   DOI
40 Hong, Y., Sharma, V. K., Chiang, P. C., and Kim, H. (2015). Fast-Target Analysis and Hourly Variation of 60 Pharmaceuticals in Wastewater Using UPLC-High Resolution Mass Spectrometry. Archives of Environmental Contamination and Toxicology, 69 (4), pp. 525-534.   DOI
41 Boleda, M. R., Alechaga, E., Moyano, E., Galceran, M. T., and Ventura, F. (2014). Survey of the Occurrence of Pharmaceuticals in Spanish Finished Drinking Waters, Environmental Science and Pollution Research, 21(18), pp. 10917- 10939.   DOI
42 Andersson, D. I. and Hughes, D. (2014). Microbiological Effects of Sublethal Levels of Antibiotics, Nature Reviews Microbiology, 12(7), pp. 465-478.   DOI
43 Behera, S. K., Kim, H. W., Oh, J. E., and Park, H. S. (2011). Occurrence and Removal of Antibiotics, Hormones and Several Other Pharmaceuticals in Wastewater Treatment Plants of the Largest Industrial City of Korea, Science of the Total Environment, 409(20), pp. 4351-4360.   DOI
44 Adams, C., Wang, Y., Lofin, K., and Meyer, M. (2002). Removal of Antibiotics from Surface and Distilled Water in Conventional Water Treatment Process, Journal of Environmental Engineering, 128(3), pp. 253-260.   DOI
45 Amelin, V. G. and Timofeev, A. A. (2016). Identification and Determination of Mycotoxins and Food Additives in Feed by HPLC-High-Resolution Time-of-Flight Mass Spectrometry, Journal of Analytical Chemistry, 71(4), pp. 401-417.
46 Ben, W., Qiang, Z., Adams, C., Zhang, H., and Chen, L. (2008). Simultaneous Determination of Sulfonamides, Tetracyclines and Tiamulin in Swine Wastewater by Solid-Phase Extraction and Liquid Chromatography-Mass Spectrometry, Journal of Chromatography A, 1202(2), pp. 173-180.   DOI
47 Berendsen, B. J., Gerritsen, H. W., Wegh, R. S., Lameris, S., van Sebille, R., Stolker, A. A., and Nielen, M. W. (2013). Comprehensive Analysis of ${\beta}$-Lactam Antibiotics Including Penicillins, Cephalosporins, and Carbapenems in Poultry Muscle Using Liquid Chromatography Coupled to Tandem Mass Spectrometry, Analytical and Bioanalytical Chemistry, 405(24), pp. 7859-7874.   DOI
48 Biswal, B. K., Mazza, A., Masson, L., Gehr, R., and Frigon, D. (2014). Impact of Wastewater Treatment Processes on Antimicrobial Resistance Genes and Their Co-occurrence with Virulence Genes in Escherichia Coli, Water Research, 50, pp. 245-253.   DOI
49 Bonnet, R. (2004). Growing Group of Extended-Spectrum ${\beta}$-Lactamases: the CTX-M Enzymes, Antimicrobial Agents and Chemotherapy, 48(1), pp. 1-14.   DOI
50 Boscher, A., Guignard, C., Pellet, T., Hoffmann, L., and Bohn, T. (2010). Development of a Multi-Class Method for the Quantification of Veterinary Drug Residues in Feedingstuffs by Liquid Chromatography-Tandem Mass Spectrometry, Journal of Chromatography A, 1217(41), pp. 6394-6404.   DOI
51 Chen, H. and Zhang, M. (2013). Effects of Advanced Treatment Systems on the Removal of Antibiotic Resistance Genes in Wastewater Treatment Plants from Hangzhou, China, Environmental Science & Technology, 47, pp. 8157-8163.
52 Bousova, K., Senyuva, H., and Mittendorf, K. (2013). Quantitative Multi-Residue Method for Determination Antibiotics in Chicken Meat Using Turbulent Flow Chromatography Coupled to Liquid Chromatography-Tandem Mass Spectrometry, Journal of Chromatography A, 1274, pp. 19-27.   DOI
53 Calamari, D., Zuccato, E., Castiglioni, S., Bagnati, R., and Fanelli, R. (2003). Strategic Survey of Therapeutic Drugs in the Rivers Po and Lambro in Northern Italy, Environmental Science and Technology, 37(7), pp. 1241-1248.   DOI
54 Castiglioni, S., Bagnati, R., Calamari, D., Fanelli, R., and Zuccato, E. (2005). A Multiresidue Analytical Method Using Solid-Phase Extraction and High-Pressure Liquid Chromatography Tandem Mass Spectrometry to Measure Pharmaceuticals of Different Therapeutic Classes in Urban Wastewaters, Journal of Chromatography A, 1092(2), pp. 206-215.   DOI
55 Cha, J. M., Yang, S., and Carlson, K. H. (2006). Trace Determination of ${\beta}$-Lactam Antibiotics in Surface Water and Urban Wastewater Using Liquid Chromatography Combined with Electrospray Tandem Mass Spectrometry, Journal of Chromatography A, 1115(1), pp. 46-57.   DOI
56 Chander, Y., Oliveira, S., and Goyal S. M. (2011). Characterisation of Ceftiofur Resistance in Swine Bacterial Pathogens, The Veterinary Journal, 187(1), pp. 139-141.   DOI
57 Chitescu, C. L., Kaklamanos, G., Nicolau, A. I., and Stolker, A. A. M. L. (2015). High Sensitive Multiresidue Analysis of Pharmaceuticals and Antifungals in Surface Water Using UHPLC-Q-Exactive Orbitrap HRMS. Application to the Danube River Basin on the Romanian Territory, Science of The Total Environment, 532, pp. 501-511.   DOI
58 De Alwis, H. and Heller, D. H. (2010). Multiclass, Multiresidue Method for the Detection of Antibiotic Residues in Distillers Grains by Liquid Chromatography and Ion Trap Tandem Mass Spectrometry, Journal of Chromatography A, 1217(18), pp. 3046-3084.
59 Christian T., Schneider, R. J., Farber, H. A., Skutlarek, D., Meyer, M. T., and Goldbach, H. E. (2003). Determination of Antibiotic Residues in Manure, Soil, and Surface Waters, Acta Hydrochimica et Hydrobiologica, 31(1), pp. 36-44.   DOI
60 Dahmen, S., Mansour, W., Charfi, K., Boujaafar, N., Arlet, G., and Bouallegue, O. (2012). Imipenem Resistance in Klebsiella Pneumoniae is Associated to the Combination of Plasmid-Mediated CMY-4 AmpC ${\beta}$-Lactamase and Loss of an Outer Membrane Protein, Microbial Drug Resistance, 18(5), pp. 479-483.   DOI
61 Diaz-Cruz, M. S. and Barcelo, D. (2006). Determination of Antimicrobial Residues and Metabolites in the Aquatic Environment by Liquid Chromatography Tandem Mass Spectrometry, Analytical and Bioanalytical Chemistry, 386(4), pp. 973-985.   DOI
62 Dolliver, H., Gupta, S., and Noll, S. (2008). Antibiotic Degradation During Manure Composting, Journal of Environmental Quality, 37(3) pp. 1245-1253.   DOI
63 Donato, F. F., Kemmerich, M., Facco, J. F., Friggi, C. A., Prestes, O. D., Adaime, M. B., and Zanella, R. (2012). Simultaneous Determination of Pesticide and Antibiotic Residues at Trace Levels in Water Samples by SPE and LC-MS/MS, Brazilian Journal of Analytical Chemistry, 7, pp. 331-340.
64 Dutil, L., Irwin, R., Finley, R., Ng, L. K., Avery, B., Boerlin, P., Bourgault, A., Cole, L., Daignault, D., Desruisseau, A., Demczuk, W., Hoang, L., Horsman, G. B., Ismail, J., Jamieson, F., Maki, A., Pacagnella, A., and Pillai, D. R. (2010). Ceftiofur Resistance in Salmonella Enterica Serovar Heidelberg from Chicken Meat and Humans, Canada, Emerging Infectious Diseases, 16(1), pp. 48-54.   DOI
65 Fram, M. S. and Belitz, K. (2011). Occurrence and Concentrations of Pharmaceutical Compounds in Groundwater Used for Public Drinking-Water Supply in California, Science of the Total Environment, 409(18), pp. 3409-3417.   DOI
66 Evaggelopoulou, E. N. and Samanidou, V. F. (2013). Development and Validation of an HPLC Method for the Determination of Six Penicillin and Three Amphenicol Antibiotics in Gilthead Seabream (Sparus Aurata) Tissue According to the European Union Decision 2002/657/EC, Food Chemistry, 136(3), pp. 1322-1329.   DOI
67 Ewers, C., Grobbel, M., Stamm, I., Kopp, P. A., Diehl, I., Semmler, T., Fruth, A., Beutlich, J., Guerra, B., Wieler, L. H., and Guenther, S. (2010). Emergence of Human Pandemic O25:H4-ST131 CTX-M-15 Extended-Spectrum-${\beta}$-Lactamase-Producing Escherichia coli among Companion Animals, Journal of Antimicrobial Chemotherapy, 65(4), pp. 651-660.   DOI
68 Ischbach, M. A., and Walsh, C. T. (2009). Antibiotics for Emerging Pathogens, Science, 325(5944), pp. 1089-1093.   DOI
69 Franciolli, M., Bille, J., Glauser, M. P., and Moreillon P. (1991). ${\beta}$-Lactam Resistance Mechanisms of Methicillin-Resistant Staphylococcus Aureus, The Journal of Infectious Diseases, 163(3), pp. 514-522.   DOI
70 Gao, P., Ding, Y., Li, H., and Xagoraraki, I. (2012). Occurrence of Pharmaceuticals in a Municipal Wastewater Treatment Plant: Mass Balance and Removal Processes, Chemosphere, 88(1), pp. 17-24.   DOI
71 Martinez-Carballo, E., Gonzalez-Barreiro, C., Scharf, S., and Gans, O. (2007). Environmental Monitoring Study of Selected Veterinary Antibiotics in Animal Manure and Soils in Austria, Environmental Pollution, 148(2), pp. 570-579.   DOI
72 Gorissen, B., Reyns, T., Devreese, M., De Backer, P., Van Loco, J., and Croubels, S. (2015). Determination of Selected Veterinary Antimicrobials in Poultry Excreta by UHPLC-MS/MS, for Application in Salmonella Control Programs, Analytical and Bioanalytical Chemistry, 407(15), pp. 4447-4457.   DOI
73 Gros, M., Petrovic, M., and Barcelo, D. (2006). Development of Multi-Residue Analytical Methodology Based on Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for Screening and Trace Level Determination of Pharmaceuticals in Surface and Wastewaters, Talanta, 70(4), pp. 678-690.   DOI
74 Gros, M., Rodriguze-Mozaz, S., and Barcelo, D. (2013). Rapid Analysis of Multiclass Antibiotic Residues and Some of Their Metabolites in Hospital, Urban Wastewater and River Water by Ultra-High-Performance Liquid Chromatography Coupled to Quadrupole-Linear Ion Trap Tandem Mass Spectrometry, Journal of Chromatography A, 1292, pp. 173-188.   DOI
75 Hasman, H., Mevius, D., Veldman, K., Olesen, I., and Aarestrup, F. M. (2005). ${\beta}$-Lactamases Among Extended-Spectrum ${\beta}$-Lactamase (ESBL)-Resistant Salmonella from Poultry, Poultry Products and Human Patients in The Netherlands, Journal of Antimicrobial Chemotherapy, 56(1), pp. 115-121.   DOI
76 Hawkey, P. M. and Livemore, D. M. (2012). Carbapenem Antibiotics for Serious Infection, The BMJ, 344, pp. e3236.   DOI
77 Migliore, L., Civitareale, C., Cozzolino, S., Casoria, P., Brambilla, G., and Gaudio, L. (1998). Laboratory Models to Evaluate Phytotoxicity of Sulphadimethoxine on Terrestrial Plants, Chemosphere, 37(14), pp.2957-2961.   DOI
78 Lopez, B., Ollivier, P., Togola, A., Baran, N., and Ghestem, J. P. (2015). Screening of French Groundwater for Regulated and Emerging Contaminants, Science of The Total Environment, 518, pp. 562-573.
79 Leung, H. W., Jin, L., Wei, S., Tsui, M. M. P., Zhou, B., Jiao, L., Cheung, P. C., Chun, Y. K., Murphy, M. B., and Lam, P. K. S. (2013). Pharmaceuticals in Tap Water: Human Health Risk Assessment and Proposed Monitoring Framework in China, Environmental Health Perspectives, 121(7), pp. 839-846.   DOI
80 Malchi, T., Maor, Y., Tadmor, G., Shenker, M., and Chefetz, B. (2014). Irrigation of Root Vegetables with Treated Wastewater: Evaluating Uptake of Pharmaceuticals and the Associated Human Health Risks, Environmental Science & Technology, 48(16), pp. 9325-9333.   DOI
81 Martinez-Villalba, A., Moyano, E., and Galceran, M. T. (2009). Fast Liquid Chromatography/Multiple-Stage Mass Spectrometry of Coccidiostats, Rapid Communications in Mass Spectrometry, 23(9), pp. 1255-1263.   DOI
82 McArdell, C. S., Molnar, E., Suter,M. J. F., and Giger, W. (2003). Occurrence and Fate o Macrolide Antibiotics in Wastewater Treatment Plants and in the Glatt Valley Watershed, Switzerland, Environmental Science & Technology, 37(24), pp. 5479-5486.   DOI
83 Miao, X. S., Bishay, F., Chen, M., and Metcalfe, C. D. (2004). Occurrence of Antimicrobials in the Final Effluents of Wastewater Treatment Plants in Canada, Environmental Science and Technology, 38(13), pp. 3533-3541.   DOI
84 Jones, R. N. (2001). Resistance Patterns Among Nosocomial Pathogens: Trends Over the Past Few Years, Chest Journal, 119(2), pp. 397S-404S.   DOI
85 Migliore, L., Cozzolino, S., and Fiori, M. (2003). Phytotoxicity to and Uptake of Enrofloxacin in Crop Plants, Chemosphere, 52(7), pp.1233-1244.   DOI
86 Hur, J., Jawale, C., and Lee, J. H. (2012). Antimicrobial Resistance of Salmonella Isolated from Food Animals: A Review, Food Research International, 45(2), pp. 819-830.   DOI
87 Iglesias, A., Nebot, C., Miranda, J. M., Vazquez, B. I., and Cepeda, A. (2012). Detection and Quantitative Analysis of 21 Veterinary Drugs in River Water Using High-Pressure Liquid Chromatography Coupled to Tandem Mass Spectrometry, Environmental Science and Pollution Research, 19(8), pp. 3235-3249.   DOI
88 Karthikeyan, K. G. and Meyer, M. T. (2006). Occurrence of Antibiotics in Wastewater Treatment Facilities in Wisconsin, USA, Science of the Total Environment, 361(1), pp. 196-207.   DOI
89 Kaufmann, A. and Maden, K. (2005). Determination of 11 Aminoglycosides in Meat and Liver by Liquid Chromatography with Tandem Mass Spectrometry, Journal of AOAC International, 88, pp. 1118-1125.
90 Kim, S. C. and Carlson, K. (2007). Quantification of Human and Veterinary Antibiotics in Water and Sediment Using SPE/LC/MS/MS, Analytical and Bioanalytical Chemistry, 387(4), pp. 1301-1315.   DOI
91 Korea Ministry of Government Legislation. (2015). Act On The Management and Use of Livestock Excreta, 13526, Korea Ministry of Government Legislation.
92 Kleywegt, S., Pileggi, V., Yang, P., Hao, C., Zhao, X., Rocks, C., Thach. S., Cheung, P., and Whitehead, B. (2011). Pharmaceuticals, Hormones and Bisphenol A in Untreated Source and Finished Drinking Water in Ontario, Canada-Occurrence and Treatment Efficiency, Science of the Total Environment, 409(8), pp. 1481-1488.   DOI