DOI QR코드

DOI QR Code

Comparison of Mechanical Properties between Bulk-fill and Conventional Composite Resin

Bulk-fill과 Conventional 복합레진의 물성비교

  • Seok, Ujeong (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Kim, Jongbin (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Kim, Kiseob (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Kim, Jongsoo (Department of Pediatric Dentistry, College of Dentistry, Dankook University)
  • 석유정 (단국대학교 치과대학 소아치과학교실) ;
  • 김종빈 (단국대학교 치과대학 소아치과학교실) ;
  • 김기섭 (단국대학교 치과대학 소아치과학교실) ;
  • 김종수 (단국대학교 치과대학 소아치과학교실)
  • Received : 2016.07.13
  • Accepted : 2016.08.25
  • Published : 2016.11.30

Abstract

The aim of this study was to compare the mechanical properties of high viscosity bulk-fill resin composites, $Filtek^{TM}$ Bulk Fill Posterior Restorative (FBF) and $Tetric^{(R)}$ N-Ceram Bulk Fill (TBF), with conventional composite ($Filtek^{TM}$ Z-350 XT, Z-350). The Vickers hardness test which indicates the degree of conversion was performed and the dye penetration test was performed to measure the microleakage which indicates polymerization shrinkage amount. To minimize experimental error, the standardized 3D-printed molds and the bovine teeth were used. Obtained data were analyzed by the Kruskal-Wallis test and Mann-Whitney test with the confidence interval of 95%. In the microhardness test within 1 hour of polymerization, lower surface of FBF and TBF showed significantly lower value than that of Z-350 (p < 0.05). But after 24 hours, the microhardness of FBF had increased and showed no significant difference with Z-350 (p > 0.05). In top and 2 mm depth surface, mean microhardness values were in the following order: Z-350 > FBF > TBF (p < 0.05). The mean microleakage value of TBF was significantly lower than others (p < 0.05). For clinical application of bulk-fill resin composites, caution for applying masticatory forces during 24 hours after polymerization is advised and further studies to decrease microleakage should be conducted.

본 연구에서는 최근 개발된 교합면 수복용 bulk-fill resin인 Filtek Bulk Fill Posterior Restorative (FBF)와 $Tetric^{(R)}$-N-Ceram Bulk Fill (TBF)의 물성을 기존 복합레진($Filtek^{TM}$ Z-350 XT, 이하 Z-350)과 비교하여 그 효용성을 평가하고자 하였다. 재료의 중합도를 반영할 수 있는 미세경도 및 중합수축을 반영하는 미세누출 양을 염료침투실험으로 측정하였다. 실험오차를 줄이기 위하여 정형화 된 3D 프린팅 몰드에 충전하여 미세경도를 측정하고, 우치를 대상으로 미세누출을 평가하였다. 측정된 미세경도와 미세누출정도는 Kruskal-Wallis test와 Mann-Whitney test를 이용하여 95%의 신뢰도로 각 군별 유의성을 평가하였다. 하면 미세경도에서 광중합 시행 1시간 이내에는 FBF와 TBF가 Z-350에 비해 유의하게 낮은 미세경도를 보였으나(p < 0.05), 24시간 후에는 FBF의 미세경도가 Z-350과 유의한 차이를 보이지 않을 만큼 현저히 증가하였다(p > 0.05). 하면을 제외한 미세경도는 Z-350, FBF, TBF 순으로 유의한 차이를 보였으며(p < 0.05) 미세누출실험에서는 TBF가 다른 두 군에 비해 유의하게 작은 미세누출을 보였다(p < 0.05). Bulk-fill 레진의 임상적 적용을 위해서는 중합 역학의 특성 상 수복 후 24시간 동안 저작력에 대한 주의가 필요하며 미세누출량을 감소시키기 위한 추가적 연구가 필요할 것으로 사료된다.

Keywords

References

  1. Lee JK : Restoration of primary anterior teeth : review of the literature. Pediatr Dent, 24:506-510, 2002.
  2. Anastasios G, Martin FJ, Fairpo CG : The influence of restorative material on the survival rate of restorations in primary molars. Pediatr Dent, 16:282-288, 1994.
  3. Nozaka K, Suruga Y, Amari E : Microleakage of composite resins in cavities of upper primary molars. Int J Paediatr Dent, 9:185-194, 1999.
  4. Donly KJ, Garcia-Godoy F : The use of resin-based composite in children. Pediatr Dent, 24:480-488, 2002.
  5. Burgess JO, Walker R, Davidson JM : Posterior resin-based composite : review of the literature. Pediatr Dent, 24:465-479, 2002.
  6. Pilo R, Oelgiesser D, Cardash HS : A survey of output intensity and potential for depth of cure among light-curing units in clinical use. J Dent, 27:235-241, 1999. https://doi.org/10.1016/S0300-5712(98)00052-9
  7. Scientific Documentation $Tetric^{(R)}$ N-Ceram Bulk Fill. Available from URL : http://www.ivoclarvivadent.co.kr/ko/products/restorative-materials/composites/tetric-n-ceram-bulk-fill 2014. (Accessed on November 3, 2015).
  8. $Filtek^{TM}$ bulk-fill-posterior restorative technical product profile.Available from URL : http://multimedia.3m.com/mws/media/976634O/filtek-bulk-fillposterior-restorative-technical-product-profile.pdf 2015 (Accessed on November 3, 2015).
  9. Biasi MD, Calvi RM, Angerame D : Microhardness of a new flowable composite liner for posterior restorations. Dent Mater, 26:e25, 2010.
  10. Ilie N, Bucuta S, Draenert M : Bulk-fill Resin-based Composites : An In Vitro Assessment of Their Mechanical Performance. Oper Dent, 38:618-625, 2013. https://doi.org/10.2341/12-395-L
  11. Leprince JG, Palin WM, Leloup G, et al. : Physicomechanical characteristics of commercially available bulk-fill composites. J Dent, 42:993-1000, 2014. https://doi.org/10.1016/j.jdent.2014.05.009
  12. Dejou J, Sindres V, Camps J : Influence of criteria on the results of in vitro evaluation of microleakage. Dent Mater, 12:342-349, 1996. https://doi.org/10.1016/S0109-5641(96)80044-3
  13. Yoo SH, Kim JS : The study on the microleakage of the restoration with self-etching priming/bonding agent. J Korean Acad Pediatr Dent, 31:26-33, 2004.
  14. Tyas MJ, Burrow MF : Adhesive restorative materials : A review. Aust Dent J, 49:112-121, 2004. https://doi.org/10.1111/j.1834-7819.2004.tb00059.x
  15. Frankenberger R, Perdigao J, Rosa BT, et al. : 'Nobottle' vs 'multi-bottle' dentin adhesives - a microtensile bond strength and morphological study. Dent Mater, 17:373-380, 2001. https://doi.org/10.1016/S0109-5641(00)00084-1
  16. Abed YA, Sabry HA, Alrobeigy NA : Degree of conversion and surface hardness of bulk-fill composite versus incremental-fill composite. Tanta Dent J, 12:71-80, 2015. https://doi.org/10.1016/j.tdj.2015.01.003
  17. Flury S, Hayoz S, Lussi A, et al. : Depth of cure of resin composites : Is the ISO 4049 method suitable for bulk fill materials? Dent Mater, 28:521-528, 2012. https://doi.org/10.1016/j.dental.2012.02.002
  18. Korean Dental Material Prof. Council : Dental materials, 5th ed. Koonja Publishing INC. 58-60, 2008.
  19. Mandikose MN, Mcgicney GP, Carter JM, et al. : A comparison of the wear resistence and hardness of indirect composite resin. J Prosth Dent, 85:386-395, 2001. https://doi.org/10.1067/mpr.2001.114267
  20. Hubbezoglu I, Bolayir G, Bek B, et al. : Microhardness Evaluation of Resin Composites Polymerized by Three Different Light Sources. Dent Mater J, 26:845-853, 2007. https://doi.org/10.4012/dmj.26.845
  21. Santos GB, Medeiros IS, Braga RR, et al. : Composite Depth of Cure Obtained with QTH and LED Units Assessed by Microhardness and Micro-Raman Spectroscopy. Oper Dent, 31:79-83, 2007.
  22. Alshali RZ, Silikas N, Satterthwaite JD : Degree of conversion of bulk-fill compared to conventional resin-composites at two time intervals. Dent Mater, 29:e213-e217, 2013. https://doi.org/10.1016/j.dental.2013.05.011
  23. Gajewski VES, Pfeifer CS, Braga RR, et al. : Monomers Used in Resin Composites : Degree of Conversion, Mechanical Properties and Water Sorption/Solubility. Braz Dent J, 23:508-514, 2012. https://doi.org/10.1590/S0103-64402012000500007
  24. Ilie N, KeBler A, Durner J : Influence of various irradiation processes on the mechanical properties and polymerisation kinetics of bulk-fill resin based composites. J Dent, 41:695-702, 2013. https://doi.org/10.1016/j.jdent.2013.05.008
  25. Krämer N, Lohbauer U, Frankenberger R, et al. : Light curing of resin-based composites in the LED era. Am J Dent, 21:135-142, 2008.
  26. Galvo MR, Caldas SG, Andrade MF, et al. : Evaluation of degree of conversion and hardness of dental composites photoactivated with different light guide tips. Eur J Dent, 7:86-93, 2013.
  27. Reeves GW, Fitchie JG, Puckett AD, et al. : Microleakage of New Dentin Bonding Systems Using Human and Bovine Teeth. Oper Dent, 20:230-235, 1995.
  28. Pazinatto FB, Campos BB, Atta MT : Effect of the number of thermocycles on microleakage of resin composite restorations. Presqui Odontol Brass, 17:337-341, 2003. https://doi.org/10.1590/S1517-74912003000400008
  29. Dugan JS : NOVEL PROPERTIES OF PLA FIBERS. Available from URL : www.fitfibers.com/files/PLA%20Fibers.doc (Accessed on December 5, 2015).