DOI QR코드

DOI QR Code

Inhibitory Effects of Ethanolic Extracts from Aster glehni on Xanthine Oxidase and Content Determination of Bioactive Components Using HPLC-UV

섬쑥부쟁이 에탄올 추출물의 잔틴산화효소 저해 효능 및 HPLC-UV를 이용한 유효성분의 함량 분석

  • Kang, Dong Hyeon (Molecular Recognition Research Center, Korea Institute of Science and Technology) ;
  • Han, Eun Hye (R&D Center, Koreaeundan Co., Ltd.) ;
  • Jin, Changbae (Molecular Recognition Research Center, Korea Institute of Science and Technology) ;
  • Kim, Hyoung Ja (Molecular Recognition Research Center, Korea Institute of Science and Technology)
  • 강동현 (한국과학기술연구원 분자인식연구센터) ;
  • 한은혜 (고려은단 R&D부) ;
  • 진창배 (한국과학기술연구원 분자인식연구센터) ;
  • 김형자 (한국과학기술연구원 분자인식연구센터)
  • Received : 2016.08.08
  • Accepted : 2016.09.12
  • Published : 2016.11.30

Abstract

This study aimed to establish an optimal extraction process and high performance liquid chromatography-ultraviolet (HPLC-UV) analytical method for determination of 3,5-dicaffeoylquinic acid (3,5-DCQA) as a part of materials standardization for the development of a xanthine oxidase inhibitor as a health functional food. The quantitative determination method of 3,5-DCQA as a marker compound was optimized by HPLC analysis using a Luna RP-18 column, and the correlation coefficient for the calibration curve showed good linearity of more than 0.9999 using a gradient eluent of water (1% acetic acid) and methanol as the mobile phase at a flow rate of 1.0 mL/min and a detection wavelength of 320 nm. The HPLC-UV method was applied successfully to quantification of the marker compound (3,5-DCQA) in Aster glehni extracts after validation of the method with linearity, accuracy, and precision. Ethanolic extracts of A. glehni (AGEs) were evaluated by reflux extraction at 70 and $80^{\circ}C$ with 30, 50, 70, and 80% ethanol for 3, 4, 5, and 6 h, respectively. Among AGEs, 70% AGE at $70^{\circ}C$ showed the highest content of 3,5-DCQA of $52.59{\pm}3.45mg/100g$ A. glehni. Furthermore, AGEs were analyzed for their inhibitory activities on uric acid production by the xanthine/xanthine oxidase system. The 70% AGE at $70^{\circ}C$ showed the most potent inhibitory activity with $IC_{50}$ values of $77.01{\pm}3.13{\sim}89.96{\pm}3.08{\mu}g/mL$. The results suggest that standardization of 3,5-DCQA in AGEs using HPLC-UV analysis would be an acceptable method for the development of health functional foods.

섬쑥부쟁이로부터 고요산혈증 개선에 도움을 주는 기능성 식품 개발을 위하여 최적의 에탄올 추출물 탐색과 high performance liquid chromatography-ultraviolet(HPLC-UV) 분석방법에 의한 validation을 실시하였다. 지표성분으로 3,5-dicaffeoylquinic acid(3,5-DCQA)를 선정하여 표준화를 실시하였으며 검출법 확립을 위한 3,5-DCQA 정량분석은 Luna RP-18 칼럼($4.6{\times}250mm$, $5{\mu}m$)을 이용하여 1% 초산용액과 메탄올을 전개용매로 사용하였다. 용출은 1.0 mL/min의 유속으로 기울기 용출(gradient elution) 방법을 이용하였으며, 320 nm 파장에서 검출한 피크 면적을 이용하여 검량곡선을 작성하여 분석하였다. 본 연구에서 확립한 분석법으로 특이성, 직선성, 정밀성, 정확성, 회수율을 검색하였다. 3,5-DCQA의 검량선으로부터 상관계수($R^2$) 0.9999의 우수한 직선성과 intra-day와 inter-day 분석에서 90% 이상의 회수율과 5% 미만의 RSD를 나타내 정밀성과 정확성을 입증하였다. 검출한계는 $2.68{\mu}g/mL$였고 정량한계는 $8.11{\mu}g/mL$로 나타났다. 섬쑥부쟁이 에탄올 추출물(AGE)은 70과 $80^{\circ}C$에서 30, 50, 70, 80% 에탄올로 3, 4, 5, 6시간 동안 각각 추출하였으며, 지표물질의 검량곡선을 활용하여 각각의 AGE로부터 3,5-DCQA의 함량을 분석하였다. 본 시험법으로 분석한 3,5-DCQA의 함량은 $70^{\circ}C$에서 추출한 70% AGE가 $52.59{\pm}3.45mg/Aster$ glehni 100g의 함량을 나타내 가장 우수하게 나타났다. 그러나 섬쑥부쟁이 추출물에 함유된 5-caffeoylquinic acid(5-CQA)의 함량 비교분석은 에탄올 함량이나 추출 시간에 따른 함량 변화가 미미하게 나타났다. 또한, 다양한 AGE에 대하여 XOD 저해 효능을 검색하였을 때, 3,5-DCQA의 함량이 가장 높은 $70^{\circ}C$에서 추출한 70% AGE에서 우수한 효능을 나타내 기능성 원료 표준화를 위한 적합한 분석법임이 검증되었다. 따라서 본 연구를 통하여 확립된 3,5-DCQA의 분석법은 섬쑥부쟁이 에탄올 추출물로부터 개별인정형 건강기능식품 기능성 원료 개발을 위한 유용한 자료로 활용될 것으로 생각한다.

Keywords

References

  1. Choi HK, Ford ES, Li C, Curhan G. 2007. Prevalence of the metabolic syndrome in patients with gout: the Third National Health and Nutrition Examination Survey. Arthritis Rheum 57: 109-115. https://doi.org/10.1002/art.22466
  2. Sundström J, Sullivan L, D'Agostino RB, Levy D, Kannel WB, Vasan RS. 2005. Relations of serum uric acid to longitudinal blood pressure tracking and hypertension incidence. Hypertension 45: 28-33. https://doi.org/10.1161/01.HYP.0000150784.92944.9a
  3. Hande KR, Noone RM, Stone WJ. 1984. Severe allopurinol toxicity. Description and guidelines for prevention in patients with renal insufficiency. Am J Med 76: 47-56.
  4. Schumacher HR Jr, Becker MA, Lloyd E, MacDonald PA, Lademacher C. 2009. Febuxostat in the treatment of gout: 5-yr findings of the FOCUS efficacy and safety study. Rheumatology (Oxford) 48: 188-194.
  5. Son MJ, Jin C, Lee YS, Lee JY, Kim HJ. 2015. Characterization of caffeoylglucoside derivatives and hypouricemic activity of the ethyl acetate fraction from Aster glehni. Bull Korean Chem Soc 36: 503-512.
  6. Nugroho A, Kim MH, Choi J, Choi JS, Jung WT, Lee KT, Park HJ. 2012. Phytochemical studies of the phenolic substances in Aster glehni extract and its sedative and anticonvulsant activity. Arch Pharm Res 35: 423-430. https://doi.org/10.1007/s12272-012-0304-7
  7. Lee HM, Yang G, Ahn TG, Kim MD, Nugroho A, Park HJ, Lee KT, Park W, An HJ. 2013. Antiadipogenic effects of Aster glehni extract: in vivo and in vitro effects. Evid Based Complement Alternat Med 2013: 859624.
  8. Kim HH, Park GH, Park KS, Lee JY, An BJ. 2010. Anti-oxidant and anti-inflammation activity of fraction from Aster glehni Fr. Schm. Kor J Microbiol Biotechnol 38: 434-441.
  9. Kim MH, Nugroho A, Choi J, Park HJ. 2011. The extract of Aster glehni leaves rich in caffeoylquinic acids prevents atherogenic index, oxidative stress, and body weight increase in high-fat diet-induced rats. Kor J Pharmacogn 42: 54-60.
  10. Kim HJ, Lee YS. 2005. Identification of new dicaffeoylquinic acids from Chrysanthemum morifolium and their antioxidant activities. Planta Med 71: 871-876. https://doi.org/10.1055/s-2005-873115
  11. KFDA. 2004. Analytical method guideline about validation of drugs and etc. Korea Food & Drug Administration, Seoul, Korea. p 1-18.
  12. Noro T, Oda Y, Miyase T, Ueno A, Fukushima S. 1983. Inhibitors of xanthine oxidase from the flowers and buds of Daphne genkwa. Chem Pharm Bull 31: 3984-3987. https://doi.org/10.1248/cpb.31.3984