DOI QR코드

DOI QR Code

Antioxidant Activities of Different Parts of Sparassis crispa Depending on Extraction Temperature

추출 온도에 따른 꽃송이버섯(Sparassis crispa)의 부위별 항산화 활성

  • Lee, Da-Som (Department of Food and Nutrition, Chungnam National University) ;
  • Kim, Kyoung-Hee (Department of Food and Nutrition, Chungnam National University) ;
  • Yook, Hong-Sun (Department of Food and Nutrition, Chungnam National University)
  • 이다솜 (충남대학교 식품영양학과) ;
  • 김경희 (충남대학교 식품영양학과) ;
  • 육홍선 (충남대학교 식품영양학과)
  • Received : 2016.07.07
  • Accepted : 2016.09.26
  • Published : 2016.11.30

Abstract

This study was carried out to investigate antioxidant compounds (total polyphenol and total flavonoid) and antioxidant activities (DPPH radical scavenging activity, ABTS radical scavenging activity, FRAP activity, and reducing power] of the mycelium and fruit body of Sparassis crispa depending on extraction temperature ($60^{\circ}C$ and $95^{\circ}C$). For total polyphenols, total flavonoids, FRAP activity, and reducing power, the mycelium of S. crispa extracted at $95^{\circ}C$ showed the highest contents and activities. The mycelium of S. crispa extracted at $60^{\circ}C$ and fruit body of S. crispa extracted at $95^{\circ}C$ showed the highest DPPH radical scavenging activity and ABTS radical scavenging activity, respectively. This study suggests that the antioxidant activities of S. crispa extracted at $95^{\circ}C$ are better than those of S. crispa extracted at $60^{\circ}C$, and the mycelium contained more antioxidant compounds than the fruit body.

본 연구에서는 열수 추출 방법을 이용하여 추출 온도에 따른 꽃송이버섯의 부위별 총폴리페놀 및 총플라보노이드 함량, 항산화 활성(DPPH 라디칼 소거 활성, ABTS 라디칼 소거 활성, FRAP 활성, 환원력)을 측정하였다. 총폴리페놀 및 총 플라보노이드 함량, FRAP 활성, 환원력 실험에서는 $95^{\circ}C$에서 추출한 꽃송이버섯의 균사체가 가장 높은 함량과 활성을 보였고, DPPH 라디칼 소거 활성에서는 $60^{\circ}C$에서 추출한 꽃송이버섯의 균사체가, ABTS 라디칼 소거 활성에서는 $95^{\circ}C$에서 추출한 꽃송이버섯의 자실체가 가장 높은 활성을 나타내었다. 한편 동일한 부위에서 추출 온도별로 비교하였을 때 총폴리페놀 및 총플라보노이드 함량, ABTS 라디칼 소거 활성, FRAP 활성에서는 $60^{\circ}C$에서 추출한 꽃송이버섯보다 $95^{\circ}C$에서 추출한 꽃송이버섯에서 더 높은 함량과 활성을 나타냈으며, 동일한 추출 온도에서 부위별로 비교하였을 때는 총폴리페놀 및 총플라보노이드 함량, DPPH 라디칼 소거 활성, FRAP 활성, 환원력 실험에서 균사체가 자실체보다 더 높은 함량과 활성을 나타내었다. 이에 추출 온도에 따른 꽃송이버섯의 부위별 항산화 활성을 살펴본 결과 전반적으로 $60^{\circ}C$에서 추출하였을 때보다 $95^{\circ}C$에서 추출하였을 때가 항산화 활성이 더 우수하였으며, 자실체보다는 균사체에 더 많은 항산화 성분을 함유하고 있음을 알 수 있었다. 이를 바탕으로 주로 이용되는 자실체뿐만 아니라 균사체에도 많은 항산화 성분을 함유하고 있으며, 높은 온도에서 추출했을 때 그 성분의 용출이 더 용이해짐을 알 수 있어 이를 이용한 천연 항산화제의 기능성 식품 및 소재로서의 이용과 개발 가능성이 시사되었다.

Keywords

References

  1. Chu YH, Chang CL, Hsu HF. 2000. Flavonoid content of several vegetables and their antioxidant activity. J Sci Food Agric 80: 561-566. https://doi.org/10.1002/(SICI)1097-0010(200004)80:5<561::AID-JSFA574>3.0.CO;2-#
  2. Ismail A, Tan SH. 2002. Antioxidant activity of selected commercial seaweeds. Malays J Nutr 8: 167-177.
  3. Cheung LM, Cheung PCK. 2005. Mushroom extracts with antioxidant activity against lipid peroxidation. Food Chem 89: 403-409. https://doi.org/10.1016/j.foodchem.2004.02.049
  4. Kim DH, Park SR, Debnath T, Hasnat MDA, Pervin M, Lim BO. 2013. Evaluation of the antioxidant activity and anti-inflammatory effect of Hericium erinaceus water extracts. Korean J Med Crop Sci 21: 112-117. https://doi.org/10.7783/KJMCS.2013.21.2.112
  5. Park MH, Oh KY, Lee BW. 1998. Anti-cancer activity of Lentinus edoeds and Pleurotus astreatus. Korean J Food Sci Technol 30: 702-708.
  6. Yoon KY, Lee SH, Shin SR. 2006. Antioxidant and antimicrobial activities of extracts from Sarcodon aspratus. J Korean Soc Food Sci Nutr 35: 967-972. https://doi.org/10.3746/jkfn.2006.35.8.967
  7. Shin HJ, Oh DS, Lee HD, Kang HB, Lee CW, Cha WS. 2007. Analysis of mineral, amino acid and vitamin contents of fruiting body of Sparassis crispa. J Life Sci 17: 1290-1293. https://doi.org/10.5352/JLS.2007.17.9.1290
  8. Oh DS, Park JM, Park H, Ka KH, Chun WJ. 2009. Site characteristics and vegetation structure of the habitat of cauliflower mushroom (Sparassis crispa). Korean J Mycol 37: 33-40. https://doi.org/10.4489/KJM.2009.37.1.033
  9. Kim MY, Seguin P, Ahn JK, Kim JJ, Chun SC, Kim EH, Seo SH, Kang EY, Kim SL, Park YJ, Ro HM, Chung IM. 2008. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J Agric Food Chem 56: 7265-7270. https://doi.org/10.1021/jf8008553
  10. Choi WS, Shin PG, Bok YY, Jun NH, Kim GD. 2013. Antiinflammatory effects of Sparassis crispa extracts. J Mushroom Sci Prod 11: 46-51. https://doi.org/10.14480/JM.2013.11.1.046
  11. Eum JY. 2014. Studies on anti-obesity effect of Lentinus edodes, Sparassis crispa, and Mycoleptodonoides aitchisonii. MS Thesis. Chungnam National University, Daejeon, Korea.
  12. Kim IK, Yun YC, Shin YC, Yoo J. 2013. Effect of Sparassis crispa extracts on immune cell activation and tumor growth inhibition. J Life Sci 23: 984-988. https://doi.org/10.5352/JLS.2013.23.8.984
  13. Lee SO, Kim MJ, Kim DG, Choi HJ. 2005. Antioxidative activities of temperature-stepwise water extracts from Inonotus obliquus. J Korean Soc Food Sci Nutr 34: 139-147. https://doi.org/10.3746/jkfn.2005.34.2.139
  14. Kang BH, Lee JM, Kim YK. 2010. Optimization of hot water extraction conditions for Tricholoma matsutake by response surface methodology. J Korean Soc Food Sci Nutr 39: 1206-1212. https://doi.org/10.3746/jkfn.2010.39.8.1206
  15. Park NY, Jeong YJ. 2006. Quality properties of oak mushroom (Lentinus edodes) based on extraction conditions and enzyme treatment. J Korean Soc Food Sci Nutr 35: 1273-1279. https://doi.org/10.3746/jkfn.2006.35.9.1273
  16. Kim NM, Sung HS, Kim WJ. 1993. Effect of solvents and some extraction conditions on antioxidant activity in cinnamon extracts. Korean J Food Sci Technol 25: 204-209.
  17. Folin O, Denis W. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-249.
  18. Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  19. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  20. Pellegrini N, Re R, Yang M, Rice-Evans C. 1998. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2'-azinobis(3-ethylenebenzothiazoline- 6-sulfonic acid) radical cation decolorization assay. Method Enzymol 299: 379-389.
  21. Benzie IFF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal Biochem 239: 70-79. https://doi.org/10.1006/abio.1996.0292
  22. Oyaizu M. 1986. Studies on products of browning reaction -antioxidative activities of products of browning reaction prepared from glucosamine-. Jap J Nutr 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  23. Herrmann K. 1989. Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit Rev Food Sci Nutr 28: 315-347. https://doi.org/10.1080/10408398909527504
  24. Shahidi F, Wanasundara PK. 1992. Phenolic antioxidants. Crit Rev Food Sci Nutr 32: 67-103. https://doi.org/10.1080/10408399209527581
  25. Hertog MGL, Hollman PCH, van de Putte B. 1993. Content of potentially anticarcinogenic flavonoids of tea infusions, wines and fruit juices. J Agric Food Chem 41: 1242-1246. https://doi.org/10.1021/jf00032a015
  26. You BR, Kim HR, Kim MJ, Kim MR. 2011. Comparison of the quality characteristics and antioxidant activities of the commercial black garlic and lab-prepared fermented and aged black garlic. J Korean Soc Food Sci Nutr 40: 366-371. https://doi.org/10.3746/jkfn.2011.40.3.366
  27. Jung IC, Park S, Park KS, Ha HC, Kim SH, Kwon YI, Lee JS. 1996. Antioxidant effect of fruit body and mycelial extracts of Pleurotus ostreatus. Korean J Food Sci Technol 28: 464-469.
  28. Baek GH, Jeong HS, Kim H, Yoon TJ, Suh HJ, Yu KW. 2012. Pharmacological activity of chaga mushroom on extraction conditions and immunostimulating polysaccharide. J Korean Soc Food Sci Nutr 41: 1378-1387. https://doi.org/10.3746/jkfn.2012.41.10.1378
  29. Park JW, Lee YJ, Yoon S. 2007. Total flavonoids and phenolics in fermented soy products and their effects on antioxidant activities determined by different assays. Korean J Food Cult 22: 353-358.
  30. Bae SM. 2010. Studies on proximate composition, antioxidant, antimicrobial and anticancer activities of Zanthoxylum schinifolium fruit according to ripening stages. PhD Dissertation. Kyungnam University, Changwon, Korea.
  31. Shin JH, Lee SJ, Jung WJ, Kang MJ, Sung NJ. 2011. Physicochemical characteristics of garlic (Allium sativum L.) on collected from the different regions. J Agric & Life Sci 45: 103-114.
  32. Huang SJ, Lin CP, Tsai SY. 2015. Vitamin $D_2$ content and antioxidant properties of fruit body and mycelia of edible mushrooms by UV-B irradiation. J Food Compos Anal 42: 38-45. https://doi.org/10.1016/j.jfca.2015.02.005

Cited by

  1. Effects of Sparassis crispa in Medical Therapeutics: A Systematic Review and Meta-Analysis of Randomized Controlled Trials vol.19, pp.5, 2018, https://doi.org/10.3390/ijms19051487
  2. 건조 방법에 따른 느타리버섯과 새송이버섯 열수추출물의 항산화 활성 vol.33, pp.1, 2016, https://doi.org/10.9799/ksfan.2020.33.1.064
  3. 국내 자생 야생버섯류 추출물의 생리활성 연구 vol.18, pp.2, 2020, https://doi.org/10.14480/jm.2020.18.2.151
  4. 국내 균근성 버섯류 추출물의 항산화능 및 영양성분 비교 vol.18, pp.2, 2020, https://doi.org/10.14480/jm.2020.18.2.164
  5. 복령균핵, 균사체 및 자실체의 추출용매별 생리활성 성분 비교 vol.18, pp.3, 2016, https://doi.org/10.14480/jm.2020.18.3.244
  6. 팽이, 잎새버섯, 꽃송이버섯 가공방법별 생리활성 및 영양성분 변화 vol.18, pp.4, 2016, https://doi.org/10.14480/jm.2020.18.4.403
  7. 꽃송이버섯 추출물이 RAW 264.7 세포에서 TNF-α, iNOS, IL-1β 유전자 발현에 미치는 영향 vol.9, pp.1, 2021, https://doi.org/10.15268/ksim.2021.9.1.163
  8. 주요 식용버섯 가공원료의 상온 및 저온 저장에 따른 항산화 활성 변화 vol.19, pp.1, 2016, https://doi.org/10.14480/jm.2021.19.1.14
  9. 국내 수집 야생버섯류 추출물의 생리활성 비교 vol.19, pp.1, 2021, https://doi.org/10.14480/jm.2021.19.1.41
  10. 풀버섯 균주별 항산화 활성, 베타글루칸 및 영양성분 함량 분석 vol.19, pp.1, 2021, https://doi.org/10.14480/jm.2021.19.1.56