참고문헌
- 강정기 (2013). 본질적 속성 추출을 통한 일반화에 관한 연구. 경상대학교 박사학위논문. (Kang, J.G. (2013). A study on the generalization through the extraction of essential attributes. Doctoral dissertation, GSNU.)
- 김성수.박달원 (2013). 유추를 활용한 코사인 법칙의 일반화 지도 방안. 한국학교수학회논문집. 16(4), 927-941. (Kim, S.S. & Park, D.W. (2013). A study on teaching methods of extension of cosine rule using analogy. Journal of the Korea School Mathematics Society, 16(4), 927-941.)
- 김유경.방정숙 (2012). 초등학교 수학 수업에 나타난 수학적 연결의 대상과 방법 분석. 한국수학교육학회지 시리즈 A <수학교육>, 51(4), 455-469. (Kim, Y.K. & Bang, J.S. (2012). An analysis of th objects and methods of mathematical connections in elementary mathematics instruction, The Mathematical Education, 51(4), 455-469.)
- 김진호 (2012). 학습자 중심 수학 수업을 위한 수업자료의 몇 가지 특징. 한국수학교육학회지 시리즈 C <초등수학교육>, 15(3), 189-199. (Kim, J.H. (2012) On some characteristics of instructional materials for learner-mathematics instruction. Education of Primary School Mathematics, 15(3), 189-199.)
- 문혜령.고상숙 (2010). GSP를 활용한 삼각함수에서 학습부진아의 수학화 과정에 관한 사례연구. 한국수학교육 학회지 시리즈 A <수학교육>, 49(3), 353-373. (Moon, H.R., & Choi-Koh, S.S. (2010). A case study on slow learners' mathematization of trigonometric functions, using GSP. The Mathematical Education, 49(3), 353-373.)
- 방정숙 (2002). 수학 학습에서 도구의 역할에 관한 관점: 수학적 어포던스와 상황적 어포던스의 조정. 수학교육 학연구, 12(3), 331-351. (Pang, J.S. (2002). The role of tools in mathematical learning: Coordinating mathematical and ecological affordances. The Journal of Education Research in Mathematics, 12(3), 331-351.)
- 손홍찬 (2011). GSP를 활용한 역동적 기하 환경에서 기하적 성질의 추측. 학교수학, 13(1), 107-125. (Son, H.C. (2011). A study on students' conjecturing of geometric properties in dynamic geometry environment using GSP. School Mathematics, 13(1), 107-125.)
- 송상헌.정영옥.장혜원 (2006). 초등학교 6학년 수학영재들의 기하 과제 증명 능력에 관한 사례 분석. 학교수학, 16(4), 327-344. (Song, S.H., Jeong, Y.O., & Chang, H.W. (2006). Mathematically gifted 6th grade students' proof ability for a geometrric problem. School Mathematics, 16(4), 327-344.)
- 신승윤.류성림 (2014). 초등수학영재의 수학 창의적 문제해결력과 메타인지와의 관계. 한국수학교육학회지 시리즈 C <초등수학교육>, 17(2), 95-111. (Shin, S.Y., & Rye, S.R. (2014). The relationship between mathematically gifted elementary students' math creative problem solving ability and metacognition. Education of Primary School Mathematics, 17(2), 95-111.)
- 신유경.강윤수.정인철 (2008). GSP가 증명학습에 미치는 영향: 사례연구. 한국학교수학회논문집, 11(1), 55-68. (Shin, Y.G., Kang, Y.S., & Jeong, I.C. (2008). An influence of GSP to learning process of proof of middle school students: case study. Journal of the Korea School Mathematics Society, 11(1), 55-68.)
- 영재교육종합데이터베이스 (2015). https://ged.kedi.re.kr/stss/viewStatistic.do. (Gifted Education Database (2015). https://ged.kedi.re.kr/stss/viewStatistic.do.)
- 유미경.류성림 (2013). 초등수학영재와 일반학생의 패턴의 유형에 따른 일반화 방법 비교. 학교수학, 15(2), 459-479. (Yu, M.G., & Rye, S.R. (2013). A comparison between methods of generalization according to the types of pattern of mathematically gifted students and non-gifted students in elementary school. School Mathematics, 15(2), 459-479.)
- 이헌수.이광호 (2012). 중등 영재학생들의 GSP를 활용한 내분삼각형 넓이의 일반화. 한국학교수학회논문집, 15(3), 565-584. (Lee, H.S., & Lee, G.H. (2012). The generalization of the area of internal triangles for the GSP use of mathematically gifted students. Journal of the Korea School Mathematics Society, 15(3), 565-584.)
- 장정은.정윤숙.최양희.김성원 (2013). 과학 영재들의 과제집착력 특성 탐색. 한국과학교육학회지, 33(1), 1-16. (Chang, J.E., Jeong, Y.S., Choi, Y.H., & Kim, S.W. (2013). Exploring the charateristics of science gifted students' task commitment. Journal of The Korean Association For Science Education, 33(1), 1-16.) https://doi.org/10.14697/jkase.2013.33.1.001
- 장한나라 (2013). 우리나라 수학영재교육의 현황과 효율적 운영방안 : 미국, 중국, 싱가포르와 비교하여. 경희대학교 교육대학원 석사학위논문. (Chang, H.N.R. (2013). Present Condition of Our Country's Mathematics Talent Education and an Efficient Management Plan: Compared with the US, China, Singapore. Master's thesis, GHU.)
- 장혜원 (2015). 2학년 쌓기나무 수업에서의 수학적 의사소통 분석. 학교수학, 17(2), 223-239. (Chang, H.W. (2015). Analysis of mathematical communication in building-block lessons for 2nd graders. School Mathematics, 17(2), 223-239.)
- 정찬식.노은환 (2014). 학생중심의 문제해결 모형 개발 및 효과 분석. 한국수학교육학회지 시리즈 C <초등수학 교육>, 17(1), 57-75. (Jeong, C.S., & Roh, E.H. (2014). Development and analysis of effect for problem solving model of student-based. Education of Primary School Mathematics, 17(1), 57-75.)
- 최병훈.방정숙 (2012). 초등 4,5,6학년 영재학급 학생의 패턴 일반화를 위한 해결 전략 비교. 수학교육학연구, 22(4), 619-636. (Choi, B.H., & Bang, J.S., (2012). A comparison of mathematically gifted students' solution strategies of generalizing geometric patterns. The Journal of Education Research in Mathematics, 22(4), 619-636.)
- 최종현.송상헌 (2005). 주제 탐구형 수학 영재 교수.학습 자료 개발에 관한 연구. 학교수학, 7(2), 169-192. (Choi, J.H., & Song, S.H. (2005). A study on the development of project based teaching.learning materials for the mathematically gifted. School Mathematics, 7(2), 169-192.)
- 허민 (1999). 페르마의 마지막 정리. 한국수학사학회지, 12(2), 1-13. (Her, M. (1999). Fermat's last theorem, Historia Mathematica, 12(2), 1-13.)
- Ainley, J., Bills, L., & Wilson, K. (2005). Designing spreadsheet-based tasks for purposeful algebra. International Journal of Computers for Mathematical Learning, 10(3), 191-215. https://doi.org/10.1007/s10758-005-8420-9
- Becker, J. R., & Rivera, F. (2005). Generalization strategies of beginning high school algebra students. In Chick, H. L., & Vincent, J. L.(Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education(Vol.4, pp121-128). Melbourne: PME.
- Bills, L., Ainley, J., & Wilson, K. (2006). Modes of algebraic communication-moving between natural language, spreadsheet formulae and standard notation. For the Learning of Mathematics, 26(1), 41-46.
- Bills, L., & Rowland, T. (1999). Examples, generalization and proof. In L. Brown(Ed.), Making meaning in mathematics. Advanced in mathematics education(Vol.1. pp.103-116). York, UK: QED.
- Chazan, D. (1993). High school geometry students' justification for their views of empirical evidence and mathematical proof, Educational Studies in Mathematics 24, 359-387. https://doi.org/10.1007/BF01273371
- Cho, H., Han, H., Jin, M., Kim, H., & Song, M. (2004). Designing a microworld: Activities and programs for gifted students and enhancing mathematical creativity. Proceeding of the 10th conference of the International Congress on Mathematics Education, TSG 4: Activities and Programs for Gifted Students, pp.110-118. Copenhagen, Demark.
- Davydov, V. V. (1990). Types of generalization in instruction. In Kilpatrick, J.(Ed.) Soviet Studies in Mathematics Education. Vol2. Reston VA: NCTM.
- El-Demerdash, M. & Kortenkamp, U. (2009) The effectiveness of an enrichment program using dynamic geometry software in developing mathematically gifted students' geometric creativity. Proceedings of the 9th International Conference on Technology in Mathematics Teaching, Metz, France: ICTMT 9.
- Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: The case of calculators. International Journal of Computers for Mathematical Learning, 3(3), 195-227. https://doi.org/10.1023/A:1009892720043
- Hadas, N., Hershkowitz, R., & Schwarz, B. B. (2000). The role of contradiction and uncertainty in promoting the need to prove in dynamic geometry environments. Educational Studies in Mathematics, 44, 127-150. https://doi.org/10.1023/A:1012781005718
- Harel, G., & Tall, D. (1989). The general, the abstract and the generic in advanced mathematics. For the Learning of Mathematics, 11(1), 38-42.
- Jerwan, F. (2002). Thinking education: Concepts and applications. Oman, Jordan: Dar Alfikr.
- Jonassen, D. (2000). Computers in the classroom: Mindtools for critical thinking (2nd ed.). Englewood Cliffs, New Jersey: Merrill.
- Lee, K. H. (2005). Mathematically gifted students' geometrical reasoning and informal proof. In Helen, L. C. & Jill, L. V.(Eds.), Proceeding 29th Conference of the International Group for the Psychology of Mathematics Education(Vol3, pp.241-248).
- Lee, L. (1996). An initiation into algebraic culture through generalization activities. In N. Bendnarz, C. Kieran, & L. Lee(Eds.), Approaches to algebra: Perspectives for research and teaching(pp. 87-106). Dordrecht, Netherlands: Kluwer.
- Liu, M., & Bera, S. (2005). An analysis of cognitive tool use patterns in a hypermedia learning environment. Educational Technology Research and Development, 53(1), 5-21. https://doi.org/10.1007/BF02504854
- Mason, J. (1996). Expressing generality and roots of algebra. In Bendnarz, N., Kieran, C., & Lee, L.(Eds.), Approaches to algebra(pp65-86) . Dordrecht: Kluwer.
- Mohamed, A. I. Z. (2003). Enrichment program in geometry for creative thinking development for talented students, in mathematics in the preparatory stage. Master thesis, Tanta University, Egypt.
- Orton, A., & Orton, J. (1999). Pattern and the approach to algebra. In A. Orton(Ed.), Pattern in the teaching and learning of mathematics(pp.104-120). London, UK: Cassell.
- Pyryt, M. (2003). Technology and the gifted. In Colangelo, N., & Davis, G.(Eds.), Handbook of gifted education (pp.582-589). Boson: Allyn & Bacon.
- Radford, L. (2003). Gestures, speech, and the spouting of signs: A semiotic-cultural approach to students' types of generalization. Mathematical Thinking and Learning, 5(1), 37-70. https://doi.org/10.1207/S15327833MTL0501_02
- Renzulli, J. S. (2000). The identification and development of giftedness as a paradigm for school reform.
- Sheffield, L. J. (1999). Developing mathematically promising students. Reston VA: NCTM.
- Sheffield, C. C. (2007). Technology and the gifted adolescent: Higher order thinking, 21st century literacy, and the digital native. Meridian Middle School Computer Technologies Journal, 10, 5. Retrieved from http://www.ncsu.edu/meridian/sum2007 /gifted/index.htm
- Stacey, K. (1989). Finding and using patterns in linear generalizing problems. Educational Studies in Mathematics, 20, 147-164. https://doi.org/10.1007/BF00579460
- Stacey, K., & McGregor, M. (2001). Curriculum reform and approaches to algebra. In R. Sutherland, T. Rojano, A. Bell, & R. Lins(Eds.), Perspectives on school algebra(pp. 141-154). Dordrecht, Netherlands: Kluwer.
- Van Tassel-Baska, J. (1986). Effective curriculum and instructional models for talented students. Gifted Child Quarterly, 30(4), 164-169 https://doi.org/10.1177/001698628603000404
- Zazkis, R., Liljedahl, P., & Chernoff, E. J. (2007). The role of examples in forming and refuting generalizations. ZDM Mathematics Education, 40, 131-141.