DOI QR코드

DOI QR Code

Production of Methanol from Methane by Encapsulated Methylosinus sporium

  • Patel, Sanjay K.S. (Department of Chemical Engineering, Konkuk University) ;
  • Jeong, Jae-Hoon (Department of Chemical Engineering, Konkuk University) ;
  • Mehariya, Sanjeet (Department of Chemical Engineering, Konkuk University) ;
  • Otari, Sachin V. (Department of Chemical Engineering, Konkuk University) ;
  • Madan, Bharat (Department of Chemical Engineering, Konkuk University) ;
  • Haw, Jung Rim (Department of Materials Chemistry and Engineering, Konkuk University) ;
  • Lee, Jung-Kul (Department of Chemical Engineering, Konkuk University) ;
  • Zhang, Liaoyuan (Department of Chemical Engineering, Konkuk University) ;
  • Kim, In-Won (Department of Chemical Engineering, Konkuk University)
  • Received : 2016.08.26
  • Accepted : 2016.09.20
  • Published : 2016.12.28

Abstract

Massive reserves of methane ($CH_4$) remain unexplored as a feedstock for the production of liquid fuels and chemicals, mainly because of the lack of economically suitable and sustainable strategies for selective oxidation of $CH_4$ to methanol. The present study demonstrates the bioconversion of $CH_4$ to methanol mediated by Type I methanotrophs, such as Methylomicrobium album and Methylomicrobium alcaliphilum. Furthermore, immobilization of a Type II methanotroph, Methylosinus sporium, was carried out using different encapsulation methods, employing sodium-alginate (Na-alginate) and silica gel. The encapsulated cells demonstrated higher stability for methanol production. The optimal pH, temperature, and agitation rate were determined to be pH 7.0, $30^{\circ}C$, and 175 rpm, respectively, using inoculum (1.5 mg of dry cell mass/ml) and 20% of $CH_4$ as a feed. Under these conditions, maximum methanol production (3.43 and 3.73 mM) by the encapsulated cells was recorded. Even after six cycles of reuse, the Na-alginate and silica gel encapsulated cells retained 61.8% and 51.6% of their initial efficiency for methanol production, respectively, in comparison with the efficiency of 11.5% observed in the case of free cells. These results suggest that encapsulation of methanotrophs is a promising approach to improve the stability of methanol production.

Keywords

References

  1. Ali H, Scanlan J, Dumont MG, Murrell JC. 2006. Duplication of the mmoX gene in Methylosinus sporium: cloning, sequencing and mutational analysis. Microbiology 152: 2931-2942. https://doi.org/10.1099/mic.0.29031-0
  2. Chi Z-F, Lu W-J, Wang H-T. 2015. Spatial patterns of methane oxidation and methanotrophic diversity in landfill cover soils of Southern China. J. Microbiol. Biotechnol. 25: 423-430. https://doi.org/10.4014/jmb.1408.08055
  3. Dhiman SS, Selvaraj C, Li J, Singh R, Zhao X, Kim D, et al. 2016. Phytoremediation of metal-contaminated soils by the hyperaccumulator canola (Brassica napus L.) and the use of its biomass for ethanol production. Fuel 183: 107-114. https://doi.org/10.1016/j.fuel.2016.06.025
  4. Duan C, Luo M, Xing X. 2011. High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour. Technol. 102: 7349-7353. https://doi.org/10.1016/j.biortech.2011.04.096
  5. Fei Q, Guarnieri MT, Tao L, Laurens LML, Dowe N, Pienkos PT. 2014. Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol. Adv. 32: 596-614. https://doi.org/10.1016/j.biotechadv.2014.03.011
  6. Gao H, Kim I-W, Choi J-H, Khera E, Wen F, Lee J-K. 2015. Repeated production of L-xylulose by an immobilized wholecell biocatalyst harboring L-arabinitol dehydrogenase coupled with an $NAD^+$ regeneration system. Biochem. Eng. 96: 23-28. https://doi.org/10.1016/j.bej.2014.12.017
  7. Ge X, Yang L, Sheets JP, Yu Z, Li Y. 2014. Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol. Adv. 32: 1460-1475. https://doi.org/10.1016/j.biotechadv.2014.09.004
  8. Hur DH, Na J-G, Lee EY. 2016. Highly efficient bioconversion of methane to methanol using a novel type I Methylomonas sp. DH-1 newly isolated from brewery waste sludge. J. Chem. Technol. Biotechnol. DOI: 10.1002/jctb.5007.
  9. Hwang IY, Hur DH, Lee JH, Park C-H, Chang IS, Lee JW, Lee EY. 2015. Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. J. Microbiol. Biotechnol. 25: 375-380. https://doi.org/10.4014/jmb.1412.12007
  10. Hwang IY, Lee SH, Choi YS, Park SJ, Na JG, Chang IS, et al. 2014. Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries. J. Microbiol. Biotechnol. 24: 1597-1605. https://doi.org/10.4014/jmb.1407.07070
  11. Jamil M, Ahmad F, Jeon YJ. 2016. Renewable energy technologies adopted by the UAE: prospects and challenges - a comprehensive overview. Renew. Sustain. Energy Rev. 55: 1181-1194. https://doi.org/10.1016/j.rser.2015.05.087
  12. Jung S-J, Kim S-H, Chung I-M. 2015. Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of lignocellulosic crops. Biomass Bioenergy 83: 322-327. https://doi.org/10.1016/j.biombioe.2015.10.007
  13. Kim T-S, Jung H-M, Kim S-Y, Zhang L, Sigdel S, Park J-H, et al. 2015. Reduction of acetate and lactate contributed to enhancement of a recombinant protein production in E. coli BL21. J. Microbiol. Biotechnol. 25: 1093-1100. https://doi.org/10.4014/jmb.1503.03023
  14. Knief C, Lipski A, Dunfield PF. 2003. Diversity and activity of methanotrophic bacteria in different upland soils. Appl. Environ. Microbiol. 69: 6703-6714. https://doi.org/10.1128/AEM.69.11.6703-6714.2003
  15. Kumar P, Patel SKS, Lee J-K, Kalia VC. 2013. Extending the limits of Bacillus for novel biotechnological applications. Biotechnol. Adv. 31: 1543-1561. https://doi.org/10.1016/j.biotechadv.2013.08.007
  16. Kumar P, Sharma R, Ray S, Mehariya S, Patel SKS, Lee J-K, Kalia VC. 2015. Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour. Technol. 182: 383-388. https://doi.org/10.1016/j.biortech.2015.01.138
  17. Mardina P, Li J, Patel SKS, Kim I-W, Lee J-K, Selvaraj C. 2016. Potential of immobilized whole-cell Methylocella tundrae as a biocatalyst for methanol production from methane. J. Microbiol. Biotechnol. 26: 1234-1241. https://doi.org/10.4014/jmb.1602.02074
  18. Mehta PK, Mishra S, Ghose TK. 1991. Methanol biosynthesis by covalently immobilized cells of Methylosinus trichosporium: batch and continuous studies. Biotechnol. Bioeng. 37: 551-556. https://doi.org/10.1002/bit.260370609
  19. Murrell JC, Jetten MS. 2009. The microbial methane cycle. Environ. Microbiol. Rep. 1: 279-284. https://doi.org/10.1111/j.1758-2229.2009.00089.x
  20. Niu X, Wang Z, Li Y, Zhao Z, Liu J, Jiang L, et al. 2013. "Fish-in-net," a novel method for cell immobilization of Zymomonas mobilis. PLoS One 8: e79569. https://doi.org/10.1371/journal.pone.0079569
  21. Patel SKS, Choi S-H, Kang Y-C, Lee J-K. 2016. Large-scale aerosol-assisted synthesis of biofriendly $Fe_2$$O_3$ yolk-shell particles: a promising support for enzyme immobilization. Nanoscale 8: 6728-6738. https://doi.org/10.1039/C6NR00346J
  22. Patel SKS, Kalia VC, Choi JH, Haw JR, Kim IW, Lee JK. 2014. Immobilization of laccase on SiO2 nanocarriers improves its stability and reusability. J. Microbiol. Biotechnol. 24: 639-647. https://doi.org/10.4014/jmb.1401.01025
  23. Patel SKS, Kumar P, Kalia VC. 2012. Enhancing biological hydrogen production through complementary microbial metabolisms. Int. J. Hydrogen Energy 37: 10590-10603. https://doi.org/10.1016/j.ijhydene.2012.04.045
  24. Patel SKS, Kumar P, Mehariya S, Purohit HJ, Lee JK, Kalia VC. 2014. Enhancement in hydrogen production by cocultures of Bacillus and Enterobacter. Int. J. Hydrogen Energy 39: 14663-14668. https://doi.org/10.1016/j.ijhydene.2014.07.084
  25. Patel SKS, Kumar P, Singh M, Lee JK, Kalia VC. 2015. Integrative approach to produce hydrogen and polyhydroxy alkanoate from biowaste using defined bacterial cultures. Bioresour. Technol. 176: 136-141. https://doi.org/10.1016/j.biortech.2014.11.029
  26. Patel SKS, Kumar P, Singh S, Lee JK, Kalia VC. 2015. Integrative approach for hydrogen and polyhydroxybutyrate production, pp. 73-85. In Kalia VC (ed.). Microbial factories waste treatment. Springer, New Delhi.
  27. Patel SKS, Lee JK, Kalia VC. 2016. Integrative approach for producing hydrogen and polyhydroxyalkanoate from mixed waste of biological origin. Indian J. Microbiol. 56: 293-300. https://doi.org/10.1007/s12088-016-0595-3
  28. Patel SKS, Mardina P, Kim D, Kim S-Y, Kalia VC, Kim I-W, Lee J-K. 2016. Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas. Bioresour. Technol. 218: 202-208. https://doi.org/10.1016/j.biortech.2016.06.065
  29. Patel SKS, Mardina P, Kim S-Y, Lee J-K, Kim I-W. 2016. Biological methanol production by a type II methanotroph Methylocystis bryophila. J. Microbiol. Biotechnol. 26: 717-724. https://doi.org/10.4014/jmb.1601.01013
  30. Patel SKS, Purohit HJ, Kalia VC. 2010. Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials. Int. J. Hydrogen Energy 35: 10674-10681. https://doi.org/10.1016/j.ijhydene.2010.03.025
  31. Patel SKS, Selvaraj C, Mardina P, Jeong J-H, Kalia VC, Kang Y-C, Lee J-K. 2016. Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization. Appl. Energy 171: 383-391. https://doi.org/10.1016/j.apenergy.2016.03.022
  32. Patel SKS, Singh M, Kumar P, Purohit HJ, Kalia VC. 2012. Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenergy 36: 218-225. https://doi.org/10.1016/j.biombioe.2011.10.027
  33. Pen N, Soussan L, Belleville M-P, Sanchez J, Charmette C, Paolucci-Jeanjean D. 2014. An innovative membrane bioreactor for methane biohydroxylation. Bioresour. Technol. 174: 42-52. https://doi.org/10.1016/j.biortech.2014.10.001
  34. Pierie F, Van Someren CEJ, Benders RMJ, Bekkering J, Van Gemert WJT, Moll HC. 2015. Environmental and energy system analysis of bio-methane production pathways: a comparison between feedstocks and process optimizations. Appl. Energy 160: 456-466. https://doi.org/10.1016/j.apenergy.2015.09.066
  35. Ra CH, Jung JH, Sunwoo IY, Kang CH, Jeong G-T, Kim S-K. 2015. Detoxification of Eucheuma spinosum hydrolysates with activated carbon for ethanol production by the salt-tolerant yeast Candida tropicalis. J. Microbiol. Biotechnol. 25: 856-862. https://doi.org/10.4014/jmb.1409.09038
  36. Ramachandran P, Jagtap SS, Patel SKS, Li J, Kang YC, Lee J-K. 2016. Role of the non-conserved amino acid asparagine 285 in the glycone-binding pocket of Neosartorya fischeri ${\beta}$-glucosidase. RSC Adv. 6: 48137-48144. https://doi.org/10.1039/C5RA28017F
  37. Razumovsky SD, Efremenko EN, Makhlis TA, Senko OV, Bikhovsky MY, Podmaster'ev VV, Varfolomeev SD. 2008. Effect of immobilization on the main dynamic characteristics of the enzymatic oxidation of methane to methanol by bacteria Methylosinus sporium B-2121. Russ. Chem. Bull. Int. Ed. 57: 1633-1636. https://doi.org/10.1007/s11172-008-0211-8
  38. Ricci MA, Russo A, Pisano I, Palmieri L, Angelis MD, Agrimi G. 2015. Improved 1,3-propanediol synthesis from glycerol by the robust Lactobacillus reuteri strain DSM 20016. J. Microbiol. Biotechnol. 25: 893-902. https://doi.org/10.4014/jmb.1411.11078
  39. Senko O, Makhlis T, Bihovsky M, Podmasterev V, Efremenko E, Razumovsky S, Varfolomeyev S. 2007. Methanol production in the flow system with immobilized cells Methylosinus sporium. XV International Workshop on Bioencapsulation. Vienna, Austria, September 6-8, P2-16: 1-4.
  40. Sheets JP, Ge X, Li Y-F, Yu Z, Li Y. 2016. Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate. Bioresour. Technol. 201: 50-57. https://doi.org/10.1016/j.biortech.2015.11.035
  41. Sigdel S, Hui G, Smith TJ, Murrell JC, Lee JK. 2015. Molecular dynamics simulation to rationalize regioselective hydroxylation of aromatic substrates by soluble methane monooxygenase. Bioorg. Med. Chem. Lett. 25: 1611-1615. https://doi.org/10.1016/j.bmcl.2015.01.069
  42. Strong PJ, Xie S, Clarke WP. 2015. Methane as a resource: can the methanotrophs add value? Environ. Sci. Technol. 49: 4001-4018. https://doi.org/10.1021/es504242n
  43. Takeguchi M, Okura I. 2000. Role of iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b. Catal. Surv. Jpn. 4: 51-63. https://doi.org/10.1023/A:1019036105038
  44. Yoo Y-S, Hana J-S, Ahn C-M, Kim C-G. 2015. Comparative enzyme inhibitive methanol production by Methylosinus sporium from simulated biogas. Environ. Technol. 36: 983-991. https://doi.org/10.1080/09593330.2014.971059
  45. Zhang W, Ge X, Li Y-F, Yu Z, Li Y. 2016. Isolation of a methanotroph from a hydrogen sulfide-rich anaerobic digester for methanol production from biogas. Process Biochem. 51: 838-844. https://doi.org/10.1016/j.procbio.2016.04.003

Cited by

  1. Canna edulis Leaf Extract-Mediated Preparation of Stabilized Silver Nanoparticles: Characterization, Antimicrobial Activity, and Toxicity Studies vol.27, pp.4, 2016, https://doi.org/10.4014/jmb.1610.10019
  2. Nanoparticles in Biological Hydrogen Production: An Overview vol.58, pp.1, 2016, https://doi.org/10.1007/s12088-017-0678-9
  3. Immobilization of Xylanase Using a Protein-Inorganic Hybrid System vol.28, pp.4, 2018, https://doi.org/10.4014/jmb.1710.10037
  4. Bio-Methanol Production Using Treated Domestic Wastewater with Mixed Methanotroph Species and Anaerobic Digester Biogas vol.10, pp.10, 2016, https://doi.org/10.3390/w10101414
  5. Development and Optimization of the Biological Conversion of Ethane to Ethanol Using Whole-Cell Methanotrophs Possessing Methane Monooxygenase vol.24, pp.3, 2019, https://doi.org/10.3390/molecules24030591
  6. Hierarchical Macroporous Particles for Efficient Whole-Cell Immobilization: Application in Bioconversion of Greenhouse Gases to Methanol vol.11, pp.21, 2016, https://doi.org/10.1021/acsami.9b03420
  7. Co-digestion of Biowastes to Enhance Biological Hydrogen Process by Defined Mixed Bacterial Cultures vol.59, pp.2, 2019, https://doi.org/10.1007/s12088-018-00777-8
  8. Aligning Microbial Biodiversity for Valorization of Biowastes: Conception to Perception vol.59, pp.4, 2016, https://doi.org/10.1007/s12088-019-00826-w
  9. Sustainable biosynthesis of chemicals from methane and glycerol via reconstruction of multi‐carbon utilizing pathway in obligate methanotrophic bacteria vol.14, pp.6, 2016, https://doi.org/10.1111/1751-7915.13809