DOI QR코드

DOI QR Code

Identification and Functional Analysis of RelA/SpoT Homolog (RSH) Genes in Deinococcus radiodurans

  • Wang, Jinhui (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Tian, Ye (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Zhou, Zhengfu (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Zhang, Liwen (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Zhang, Wei (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Lin, Min (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Chen, Ming (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences)
  • Received : 2016.01.11
  • Accepted : 2016.08.10
  • Published : 2016.12.28

Abstract

To identify the global effects of (p)ppGpp in the gram-positive bacterium Deinococcus radiodurans, which exhibits remarkable resistance to radiation and other stresses, RelA/SpoT homolog (RSHs) mutants were constructed by direct deletion mutagenesis. The results showed that RelA has both synthesis and hydrolysis domains of (p)ppGpp, whereas RelQ only synthesizes (p)ppGpp in D. radiodurans. The growth assay for mutants and complementation analysis revealed that deletion of relA and relQ sensitized the cells to $H_2O_2$, heat shock, and amino acid limitation. Comparative proteomic analysis revealed that the bifunctional RelA is involved in DNA repair, molecular chaperone functions, transcription, the tricarboxylic acid cycle, and metabolism, suggesting that relA maintains the cellular (p)ppGpp levels and plays a crucial role in oxidative resistance in D. radiodurans. The D. radiodurans relA and relQ genes are responsible for (p)ppGpp synthesis/hydrolysis and (p)ppGpp hydrolysis, respectively. (p)ppGpp integrates a general stress response with a targeted re-programming of gene regulation to allow bacteria to respond appropriately towards heat shock, oxidative stress, and starvation. This is the first identification of RelA and RelQ involvement in response to oxidative, heat shock, and starvation stresses in D. radiodurans, which further elucidates the remarkable resistance of this bacterium to stresses.

Keywords

References

  1. Ancona V, Lee JH, Chatnaparat T, Oh J, Hong JI, Zhao Y. 2015. The bacterial alarmone (p)ppGpp activates type III secretion system in Erwinia amylovora. J. Bacteriol. 197: 1433-1443. https://doi.org/10.1128/JB.02551-14
  2. Aravind L, Koonin EV. 1998. The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem. Sci. 23: 469-472. https://doi.org/10.1016/S0968-0004(98)01293-6
  3. Atkinson GC, Tenson T, Hauryliuk V. 2011. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS One 6: e23479. https://doi.org/10.1371/journal.pone.0023479
  4. Avarbock D, Avarbock A, Rubin H. 2000. Differential regulation of opposing RelMtb activities by the aminoacylation state of a tRNA.ribosome.mRNA.RelMtb complex. Biochemistry 39: 11640-11648. https://doi.org/10.1021/bi001256k
  5. Avarbock D, Salem J, Li LS, Wang ZM, Rubin H. 1999. Cloning and characterization of a bifunctional RelA/SpoT homologue from Mycobacterium tuberculosis. Gene 233: 261-269. https://doi.org/10.1016/S0378-1119(99)00114-6
  6. Battesti A, Bouveret E. 2006. Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Mol. Microbiol. 62: 1048-1063. https://doi.org/10.1111/j.1365-2958.2006.05442.x
  7. Battista JR, Park MJ, McLemore AE. 2001. Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. Cryobiology 43: 133-139. https://doi.org/10.1006/cryo.2001.2357
  8. Bittner AN, Kriel A, Wang JD. 2014. Lowering GTP level increases survival of amino acid starvation but slows growth rate for Bacillus subtilis cells lacking (p)ppGpp. J. Bacteriol. 196: 2067-2076. https://doi.org/10.1128/JB.01471-14
  9. Blasius M, Buob R, Shevelev IV, Hubscher U. 2007. Enzymes involved in DNA ligation and end-healing in the radioresistant bacterium Deinococcus radiodurans. BMC Mol. Biol. 8: 69. https://doi.org/10.1186/1471-2199-8-69
  10. Blasius M, Sommer S, Hubscher U. 2008. Deinococcus radiodurans: what belongs to the survival kit? Crit. Rev. Biochem. Mol. Biol. 43: 221-238. https://doi.org/10.1080/10409230802122274
  11. Boehm A, Steiner S, Zaehringer F, Casanova A, Hamburger F, Ritz D, et al. 2009. Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress. Mol. Microbiol. 72: 1500-1516. https://doi.org/10.1111/j.1365-2958.2009.06739.x
  12. Bonacossa de Almeida C, Coste G, Sommer S, Bailone A. 2002. Quantification of RecA protein in Deinococcus radiodurans reveals involvement of RecA, but not LexA, in its regulation. Mol. Genet. Genomics 268: 28-41. https://doi.org/10.1007/s00438-002-0718-x
  13. Cashel M, Kalbacher B. 1970. The control of ribonucleic acid synthesis in Escherichia coli. V. Characterization of a nucleotide associated with the stringent response. J. Biol. Chem. 245: 2309-2318.
  14. Cox MM, Battista JR. 2005. Deinococcus radiodurans - the consummate survivor. Nat. Rev. Microbiol. 3: 882-892. https://doi.org/10.1038/nrmicro1264
  15. Dalebroux ZD, Svensson SL, Gaynor EC, Swanson MS. 2010. ppGpp conjures bacterial virulence. Microbiol. Mol. Biol. Rev. 74: 171-199. https://doi.org/10.1128/MMBR.00046-09
  16. Das B, Pal RR, Bag S, Bhadra RK. 2009. Stringent response in Vibrio cholerae: genetic analysis of spoT gene function and identification of a novel (p)ppGpp synthetase gene. Mol. Microbiol. 72: 380-398. https://doi.org/10.1111/j.1365-2958.2009.06653.x
  17. Earl AM, Mohundro MM, Mian IS, Battista JR. 2002. The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression. J. Bacteriol. 184: 6216-6224. https://doi.org/10.1128/JB.184.22.6216-6224.2002
  18. Geiger T, Francois P, Liebeke M, Fraunholz M, Goerke C, Krismer B, et al. 2012. The stringent response of Staphylococcus aureus and its impact on survival after phagocytosis through the induction of intracellular PSMs expression. PLoS Pathog. 8: e1003016. https://doi.org/10.1371/journal.ppat.1003016
  19. Geiger T, Goerke C, Fritz M, Schafer T, Ohlsen K, Liebeke M, et al. 2010. Role of the (p)ppGpp synthase RSH, a RelA/ SpoT homolog, in stringent response and virulence of Staphylococcus aureus. Infect. Immun. 78: 1873-1883. https://doi.org/10.1128/IAI.01439-09
  20. Godfrey HP, Bugrysheva JV, Cabello FC. 2002. The role of the stringent response in the pathogenesis of bacterial infections. Trends Microbiol. 10: 349-351. https://doi.org/10.1016/S0966-842X(02)02403-4
  21. Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K. 2015. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat. Rev. Microbiol. 13: 298-309. https://doi.org/10.1038/nrmicro3448
  22. Hayer-Hartl M, Bracher A, Hartl FU. 2016. The GroELGroES chaperonin machine: a nano-cage for protein folding. Trends Biochem. Sci. 41: 62-76. https://doi.org/10.1016/j.tibs.2015.07.009
  23. Jain V, Saleem-Batcha R, China A, Chatterji D. 2006. Molecular dissection of the mycobacterial stringent response protein Rel. Protein Sci. 15: 1449-1464. https://doi.org/10.1110/ps.062117006
  24. Kim JN, Ahn SJ, Seaton K, Garrett S, Burne RA. 2012. Transcriptional organization and physiological contributions of the relQ operon of Streptococcus mutans. J. Bacteriol. 194: 1968-1978. https://doi.org/10.1128/JB.00037-12
  25. Kriel A, Brinsmade SR, Tse JL, Tehranchi AK, Bittner AN, Sonenshein AL, Wang JD. 2013. GTP dysregulation in Bacillus subtilis cells lacking (p)ppGpp results in phenotypic amino acid auxotrophy and failure to adapt to nutrient downshift and regulate biosynthesis genes. J. Bacteriol. 196: 189-201.
  26. Lemos JA, Lin VK, Nascimento MM, Abranches J, Burne RA. 2007. Three gene products govern (p)ppGpp production by Streptococcus mutans. Mol. Microbiol. 65: 1568-1581. https://doi.org/10.1111/j.1365-2958.2007.05897.x
  27. Liberles JS, Thórólfsson M, Martínez A. 2005. Allosteric mechanisms in ACT domain containing enzymes involved in amino acid metabolism. Amino Acids 28: 1-12. https://doi.org/10.1007/s00726-004-0152-y
  28. Magnusson LU, Farewell A, Nystrom T. 2005. ppGpp: a global regulator in Escherichia coli. Trends Microbiol. 13: 236-242. https://doi.org/10.1016/j.tim.2005.03.008
  29. Maisonneuve E, Gerdes K. 2014. Molecular mechanisms underlying bacterial persisters. Cell 157: 539-548. https://doi.org/10.1016/j.cell.2014.02.050
  30. Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ 2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 65: 44-79. https://doi.org/10.1128/MMBR.65.1.44-79.2001
  31. Mechold U, Murphy H, Brown L, Cashel M. 2002. Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis. J. Bacteriol. 184: 2878-2888. https://doi.org/10.1128/JB.184.11.2878-2888.2002
  32. Mittenhuber G. 2001. Comparative genomics and evolution of genes encoding bacterial (p)ppGpp synthetases/hydrolases (the Rel, RelA and SpoT proteins). J. Mol. Microbiol. Biotechnol. 3: 585-600.
  33. Murdeshwar MS, Chatterji D. 2012. MS_RHII-RSD, a dualfunction RNase HII-(p)ppGpp synthetase from Mycobacterium smegmatis. J. Bacteriol. 194: 4003-4014. https://doi.org/10.1128/JB.00258-12
  34. Murphy H, Cashel M. 2003. Isolation of RNA polymerase suppressors of a (p)ppGpp deficiency. Methods Enzymol. 371: 596-601.
  35. Nanamiya H, Kasai K, Nozawa A, Yun CS, Narisawa T, Murakami K, et al. 2008. Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis. Mol. Microbiol. 67: 291-304.
  36. Natori Y, Tagami K, Murakami K, Yoshida S, Tanigawa O, Moh Y, et al. 2009. Transcription activity of individual rrn operons in Bacillus subtilis mutants deficient in (p)ppGpp synthetase genes, relA, yjbM, and ywaC. J. Bacteriol. 191: 4555-4561. https://doi.org/10.1128/JB.00263-09
  37. O'Farrell PH. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250: 4007-4021.
  38. Pizarro-Cerdá J, Tedin K. 2004. The bacterial signal molecule, ppGpp, regulates Salmonella virulence gene expression. Mol. Microbiol. 52: 1827-1844. https://doi.org/10.1111/j.1365-2958.2004.04122.x
  39. Potrykus K, Murphy H, Philippe N, Cashel M. 2011. ppGpp is the major source of growth rate control in E. coli. Environ. Microbiol. 13: 563-575. https://doi.org/10.1111/j.1462-2920.2010.02357.x
  40. Rao F, See RY, Zhang D, Toh DC, Ji Q, Liang ZX. 2010. YybT is a signaling protein that contains a cyclic dinucleotide phosphodiesterase domain and a GGDEF domain with ATPase activity. J. Biol. Chem. 285: 473-482. https://doi.org/10.1074/jbc.M109.040238
  41. Repar J, Cvjetan S, Slade D, Radman M, Zahradka D, Zahradka K. 2010. RecA protein assures fidelity of DNA repair and genome stability in Deinococcus radiodurans. DNA Repair 9: 1151-1161. https://doi.org/10.1016/j.dnarep.2010.08.003
  42. Sankaranarayanan R, Dock-Bregeon AC, Romby P, Caillet J, Springer M, Rees B, et al. 1999. The structure of threonyltRNA synthetase-tRNA(Thr) complex enlightens its repressor activity and reveals an essential zinc ion in the active site. Cell 97: 371-381. https://doi.org/10.1016/S0092-8674(00)80746-1
  43. Seyfzadeh M, Keener J, Nomura M. 1993. spoT-dependent accumulation of guanosine tetraphosphate in response to fatty acid starvation in Escherichia coli. Proc. Natl. Acad. Sci. USA 90: 11004-11008. https://doi.org/10.1073/pnas.90.23.11004
  44. Slade D, Radman M. 2011. Oxidative stress resistance in Deinococcus radiodurans. Microbiol. Mol. Biol. Rev. 75: 133-191. https://doi.org/10.1128/MMBR.00015-10
  45. Srivatsan A, Wang JD. 2008. Control of bacterial transcription, translation and replication by (p)ppGpp. Curr. Opin. Microbiol. 11: 100-105. https://doi.org/10.1016/j.mib.2008.02.001
  46. Sugisaki K, Hanawa T, Yonezawa H, Osaki T, Fukutomi T, Kawakami H, et al. 2013. Role of (p)ppGpp in biofilm formation and expression of filamentous structures in Bordetella pertussis. Microbiology 159: 1379-1389. https://doi.org/10.1099/mic.0.066597-0
  47. Svitil AL, Cashel M, Zyskind JW. 1993. Guanosine tetraphosphate inhibits protein synthesis in vivo. A possible protective mechanism for starvation stress in Escherichia coli. J. Biol. Chem. 268: 2307-2311.
  48. Venkateswaran A, McFarlan SC, Ghosal D, Minton KW, Vasilenko A, Makarova K, et al. 2000. Physiologic determinants of radiation resistance in Deinococcus radiodurans. Appl. Environ. Microbiol. 66: 2620-2626. https://doi.org/10.1128/AEM.66.6.2620-2626.2000
  49. Vinella D, Albrecht C, Cashel M, D'Ari R. 2005. Iron limitation induces SpoT-dependent accumulation of ppGpp in Escherichia coli. Mol. Microbiol. 56: 958-70. https://doi.org/10.1111/j.1365-2958.2005.04601.x
  50. Wendrich TM, Blaha G, Wilson DN, Marahiel MA, Nierhaus KH. 2002 Dissection of the mechanism for the stringent factor RelA. Mol. Cell 10: 779-788. https://doi.org/10.1016/S1097-2765(02)00656-1
  51. Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M. 1991. Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J. Biol. Chem. 266: 5980-5990.
  52. Yan X, Zhao C, Budin-Verneuil A, Hartke A, Rincé A, Gilmore MS, et al. 2009. The (p)ppGpp synthetase RelA contributes to stress adaptation and virulence in Enterococcus faecalis V583. Microbiology 155: 3226-3237. https://doi.org/10.1099/mic.0.026146-0
  53. Yin L, Wang L, Lu H, Xu G, Chen H, Zhan H, et al. 2010. DRA0336, another OxyR homolog, involved in the antioxidation mechanisms in Deinococcus radiodurans. J. Microbiol. 48: 473-479. https://doi.org/10.1007/s12275-010-0043-8
  54. Zhao Z, Zhou Z, Li L, Xian X, Ke X, Chen M, Zhang Y. 2004. A copper-responsive gene cluster is required for copper homeostasis and contributes to oxidative resistance in Deinococcus radiodurans R1. Mol. Biosyst. 10: 2607-2616.

Cited by

  1. Prediction of Host-Specific Genes by Pan-Genome Analyses of the Korean Ralstonia solanacearum Species Complex vol.10, pp.None, 2016, https://doi.org/10.3389/fmicb.2019.00506
  2. Methylobacterium extorquens RSH Enzyme Synthesizes (p)ppGpp and pppApp in vitro and in vivo , and Leads to Discovery of pppApp Synthesis in Escherichia coli vol.10, pp.None, 2016, https://doi.org/10.3389/fmicb.2019.00859
  3. Fatty acid starvation activates RelA by depleting lysine precursor pyruvate vol.112, pp.4, 2019, https://doi.org/10.1111/mmi.14366
  4. Time-course transcriptome analysis reveals the mechanisms of Burkholderia sp. adaptation to high phenol concentrations vol.104, pp.13, 2020, https://doi.org/10.1007/s00253-020-10672-2
  5. Inducible expression of (pp)pGpp synthetases in Staphylococcus aureus is associated with activation of stress response genes vol.16, pp.12, 2020, https://doi.org/10.1371/journal.pgen.1009282