References
- Avendano, A. R., & Bayrak, O. (2011). Efficient shear reinforcement design limits for prestressed concrete beams. ACI Structural Journal, 108(6), 689-697.
- Batson, G., Jenkins, E., & Spatney, R. (1972). Steel fibers as shear reinforcement in beams. ACI Journal Proceedings, 69(10), 640-644.
- Campione, G. (2014). Flexural and shear resistance of steel fiber-reinforced lightweight concrete beams. Journal of Structural Engineering, 140(4), 04013103. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000887
- Colajanni, P., Recupero, A., & Spinella, N. (2012). Generalization of shear truss model to the case of SFRC beams with stirrups. Computers and Concrete, 9(3), 227-244. https://doi.org/10.12989/cac.2012.9.3.227
- Dinh, H. H., Parra-Montesinos, G. J., & Wight, J. K. (2010). Shear behavior of steel fiber-reinforced concrete beams without stirrup reinforcement. ACI Structural Journal, 107(5), 597-606.
- Furlan, S. Jr., & Hanai, J. B. (1999). Prestressed fiber reinforced concrete beams with reduced ratios of shear reinforcement. Cement & Concrete Composites, 21(3), 213-221. https://doi.org/10.1016/S0958-9465(98)00054-7
- Hwang, J.-H., Lee, D. H., Park, M.-K., Choi, S.-H., Kim, K. S., & Pan, J. (2015). Shear performance assessment of steel fiber reinforced prestressed concrete members. Computers and Concrete, 16(6), 825-846. https://doi.org/10.12989/cac.2015.16.6.825
- Hawkins, N. M., & Ghosh, S. K. (2006). Shear strength of hollow-core slabs. PCI Journal, 51(1), 110-115. https://doi.org/10.15554/pcij.09012006.110.130
- Islam, M. S., & Alam, S. (2013). Principal component and multiple regression analysis for steel fiber reinforced concrete (SFRC) beams. International Journal of Concrete Structures and Materials, 7(4), 303-317. https://doi.org/10.1007/s40069-013-0059-7
- Karl, K. W., Lee, D. H., Hwang, J. H., Kim, K. S., & Choi, I. S. (2011). Revision on material strength of steel fiber-reinforced concrete. International Journal of Concrete Structures and Materials, 5(2), 87-96. https://doi.org/10.4334/IJCSM.2011.5.2.87
- Li, B., Maekawa, K., & Okamura, H. (1989). Contact density model for stress transfer across cracks in concrete. Journal of the Faculty of Engineering, 40(1), 9-52.
- Liu, H., Xiang, T., & Zhao, R. (2009). Research on non-linear structural behaviors of prestressed concrete beams made of high strength and steel fiber reinforced concretes. Construction and Building Materials, 23(1), 85-95. https://doi.org/10.1016/j.conbuildmat.2008.01.016
- Narayanan, R., & Darwish, Y. (1987). Shear in prestressed concrete beams containing steel fibres. The International Journal of Cement Composites and Lightweight Concrete, 9(2), 81-90. https://doi.org/10.1016/0262-5075(87)90023-6
- Oh, B. H., & Kim, K. S. (2004). Shear behavior of full-scale post-tensioned prestressed concrete bridge girders. ACI Structural Journal, 101(2), 176-182.
- Padmarajaiah, S. K., & Ramaswamy, A. (2001). Behavior of fiber-reinforced prestressed and reinforced high-strength concrete beams subjected to shear. ACI Structural Journal, 98(5), 752-761.
- Padmarajaiah, S. K., & Ramaswamy, A. (2004). Flexural strength predictions of steel fiber reinforced high-strength concrete in fully-partially prestressed beam specimens. Cement & Concrete Composites, 26(4), 275-290. https://doi.org/10.1016/S0958-9465(02)00121-X
- Spinella, N., Colajanni, P., & La Mendola, L. (2012). Nonlinear analysis of beams reinforced in shear with stirrups and steel fibers. ACI Structural Journal, 109(1), 53-64.
- Thomas, J., & Ramaswamy, A. (2006). Shear strength of prestressed concrete T-beams with steel fibers over partial/full depth. ACI Structural Journal, 103(3), 427-435.
- Tan, K. H., Paramasivam, P., & Murugappan, K. (1996). Steel fibers as shear reinforcement in patially prestressed beams. ACI Structural Journal, 92(6), 643-651.
- Tadepalli, P. R., Dhonde, H. B., Mo, Y. L., & Hsu, T. T. (2015). Shear strength of prestressed steel fiber concrete I-beams. International Journal of Concrete Structures and Materials, 9(3), 267-281. https://doi.org/10.1007/s40069-015-0109-4
- Tadepalli, P. R., Hoffman, N., Hsu, T. T. C., & Mo, Y. L. (2011). Steel fiber replacement of mild steel in prestressed concrete beams. FHWA/TX-09/0-5255-2, Texas Department of Transportation, TX, USA, 177 p.
- Vecchio, F. J., & Collins, M. P. (1986). Modified compression field theory for reinforced concrete elements subjected to shear. ACI Journal Proceedings, 83(2), 219-231.
- Watanabe, F., & Lee, J. (1998). Theoretical prediction of shear strength and failure mode of reinforced concrete beas. ACI Structural Journal, 95(6), 749-757.
- Walraven, J. C. (1981). Fundamental analysis of aggregate interlock. Journal of Structural Engineering, 107(7), 2245-2270.
Cited by
- Pull-Out Behaviour of Hooked End Steel Fibres Embedded in Ultra-high Performance Mortar with Various W/B Ratios vol.11, pp.2, 2016, https://doi.org/10.1007/s40069-017-0193-8
- 하이브리드 프리스트레스트 프리캐스트 콘크리트 구조시스템의 부모멘트 영역 휨거동 vol.34, pp.10, 2016, https://doi.org/10.5659/jaik_sc.2018.34.10.3
- Investigating Flexural Behaviour of Prestressed Concrete Girders Cast by Fibre-Reinforced Concrete vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/1459314
- Experimental Study on Shear Capacity of Reinforced Concrete Beams with Corroded Longitudinal Reinforcement vol.12, pp.5, 2016, https://doi.org/10.3390/ma12050837
- Characterization of Titanium Nanotube Reinforced Cementitious Composites: Mechanical Properties, Microstructure, and Hydration vol.12, pp.10, 2016, https://doi.org/10.3390/ma12101617
- Investigation of the effect of steel fibers on the shear crack-opening and crack-slip behavior of prestressed concrete beams using digital image correlation vol.193, pp.None, 2016, https://doi.org/10.1016/j.engstruct.2019.05.030
- Multi-potential capacity for reinforced concrete members under pure torsion vol.75, pp.3, 2016, https://doi.org/10.12989/sem.2020.75.3.401
- Ductility and durability enhancement of concrete EPS by new reinforcement arrangements and polypropylene FRC utilization vol.48, pp.4, 2016, https://doi.org/10.1139/cjce-2019-0195
- Shear strength model for prestressed concrete beams with steel fibres failed in shear vol.73, pp.14, 2016, https://doi.org/10.1680/jmacr.19.00391