DOI QR코드

DOI QR Code

Simulation of D-limonene Separation from Mandarine Extract in Simulated Moving Bed (SMB)

감귤 추출물로부터 D-리모넨 분리를 위한 유사 이동층 크로마토그래피(SMB) 전산모사

  • Kim, Tae Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Ko, Kwan Young (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, In Ho (Department of Chemical Engineering, Chungnam National University)
  • 김태호 (충남대학교 공과대학 화학공학과) ;
  • 고관영 (충남대학교 공과대학 화학공학과) ;
  • 김인호 (충남대학교 공과대학 화학공학과)
  • Received : 2015.04.04
  • Accepted : 2015.06.24
  • Published : 2016.02.01

Abstract

Limonene is orange flavored natural material that is mainly contained in mandarine and lemon peels. D-limonene was extracted from cold-storaged mandarine peel by using Soxhlet extractor at $120^{\circ}C$ for 2 hours with ethanol as solvent. Henry constants of d-limonene and impurity were calculated as $H_{Lim}=8.55$ and $H_{imp}=0.223$ from the result of HPLC analysis. 4-bed SMB of limonene simulation with $0.46{\times}25cm$ columns was conducted by using Aspen chromatography program. Then effective condition for purity was found by changing $m_2$ and $m_3$ values in triangle diagram. The highest purity was 98.59% at $m_2=2.57$, $m_3=9.55$. For this case, feed, desorbent, extract, and raffinate flow rates were 1 mL/min, 1.19 mL/min, 0.857 mL/min and 1.34 mL/min, respectively. Scale-up simulation was also conducted by increasing column diameter from 0.46 cm to 1.6 cm for getting the same efficiency. The increased flow rates were 12 mL/min, 14 mL/min, 10 mL/min, and 16 mL/min for feed, desorbent, extract, and raffinate. It was possible to scale-up with maintaining same limonene purity because linear isotherms of limonene and impurity were assumed.

리모넨은 오렌지 향이 있는 천연의 키랄 화합물로 주로 감귤껍질과 레몬껍질에 함유되어 있다. $4^{\circ}C$로 냉장 보관한 감귤 껍질을 에탄올을 용매로 속슬렛 추출기에서 2시간동안 $120^{\circ}C$에서 추출하였다. 역상 HPLC 분석을 통해 d-리모넨과 불순물의 헨리 상수를 계산하여 $H_{Lim}=8.55$, $H_{imp}=0.223$를 얻었다. Aspen chromatography 프로그램을 사용해서 $0.46{\times}25cm$ 칼럼으로 이루어진 4-bed SMB의 리모넨 전산모사를 수행하였고 삼각도내의 $m_2$, $m_3$ 값을 변경하면서 순도가 가장 높은 분리 조건을 찾았다. 그 결과 가장 높은 순도는 98.59%이고, $m_2=2.57$, $m_3=9.55$였다. 이 때의 feed 유량은 1 mL/min, desorbent 유량은 1.19 mL/min, extract 유량은 0.857 mL/min, raffinate 유량은 1.34 mL/min이었다. Scale-up 전산모사를 위해 칼럼의 직경을 1.6 cm로 늘린 4-bed SMB에서 직경이 0.46 cm인 4-bed SMB와 같은 결과를 갖는 조건을 찾기 위해 유량을 칼럼 부피 비에 정비례하여 증가시켰다. 이 때 feed, desorbent, extract, raffinate의 유량은 각각 12 mL/min, 14 mL/min, 10 mL/min, 16 mL/min이었다. 리모넨과 불순물의 등온흡착곡선을 선형으로 가정하였기에 칼럼 부피에 정비례하여 유량을 증가시키는 scale-up이 가능하였다.

Keywords

References

  1. http://apps.fas.usda.gov/psdonline/circulars/citrus.pdf.
  2. Im, H. S., Yoon, C. H. and Oh, E. H., "A Study on Antibiotic Effect Using the D-limonene Oil Extracted to Wasted Mandarin Peels in Cheju," J. Korean Oil Chemist's Soc., 26(3), 350-356(2009).
  3. Morse, M. A. and Toburen, A. L., "Inhibition of Metabolic Activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone by Limonene," Cancer Letters, 104(2), 211-217(1996). https://doi.org/10.1016/0304-3835(96)04252-8
  4. Lu, H. Y., Shen, Y., Sun, X., Zhu, H. and Liu, X. J., "Washing Effects of Limonene on Pesticide Residues in Green Peppers," J. of Science of Food and Agriculture, 93(12), 2917-2921(2013). https://doi.org/10.1002/jsfa.6080
  5. Langer, R. S. and Wise, D. L., "Medical Applications of Controlled Release," CRC Press, Florida, U.S.A., 2, 2(2004).
  6. Rosen, H. B., Chang, J., Wnek, G. E., Linhardt, R. J. and Langer, R., "Bioerodible Polyanhydrides for Controlled Drug Delivery," Biomaterials., 4, 131-133(1983). https://doi.org/10.1016/0142-9612(83)90054-6
  7. Heuer, C., Hugo, P., Mann, G. and Seidel-Morgenstern, A., "Scale up in Preparative Chromatography," J. Chromatogr. A., 752, 19-29(1996). https://doi.org/10.1016/S0021-9673(96)00496-7
  8. Storti, G., Mazzotti, M., Morbidelli, M. and Carra, S., "Robust Design of Binary Countercurrent Adsorption Separation Presses," AIChE J., 39, 471-492(1993). https://doi.org/10.1002/aic.690390310
  9. Juza, M., "Development of an High-performance Liquid Chromatographic Simulated Moving Bed Separation from and Industrial Perspective," J. Chromatogr. A., 865, 35-49(1999). https://doi.org/10.1016/S0021-9673(99)00982-6
  10. Won, J. H., Cho, Y. S., Kim, Y. D. and Ahn, D. J., "Enantio-sep-Aration of R, S-ibuprofen Using Simulated Moving Bed(SMB) Chromatography," Korean Chem. Eng. Res., 39(6), 685-691(2001).
  11. Migliorini, C., Mazzotti, M. and Morbidelli, M., "Continuous Chromatographic Separation through Simulated Moving Beds under Linear and Nonlinear Conditions," J. Chromatogr. A., 827, 161-173(1998). https://doi.org/10.1016/S0021-9673(98)00643-8
  12. Pedeferri, M., Zenoni, G., Mazzotti, M. and Morbidelli, M., "Experimental Analysis of a Chiral Separation through Simulated Moving Bed Chromatography," Chem. Eng. Sci., 54, 3735-3748(1999). https://doi.org/10.1016/S0009-2509(99)00031-7
  13. Song, S. M. and Kim, I. H., "Simulation of IgY (Immunoglobulin Yolk) Purification by SMB (Simulated Moving Bed)," Korean Chem. Eng. Res., 49(6), 798-803(2011). https://doi.org/10.9713/kcer.2011.49.6.798
  14. Guiochon, G., Golshan-Shirazi, S. and Katti, A., "Fundamentals of Preparative and Nonlinear Chromatography," Academic Press, Massachusetts, U.S.A.(1994).
  15. Luis, S. P., Jose, M. L. and Alirio, E. R., "Separation of 1,1'-bi-2-naphthol Enantiomers by Continuous Chromatography in Simulated Moving Bed," Chem. Eng. Sci., 52(2), 245-257(1997). https://doi.org/10.1016/S0009-2509(96)00398-3
  16. Lee, S. H., Lee, E. and Kim, I. H., "Simulation of Simulated Moving Bed Chromatography for Separation of L-ribose and Larabinose by ASPEN Chromatography," Korean J. Biotechnol. Bioeng., 23(2), 135-141(2008).
  17. Lee, I. S., Lee, I. S. and Kim, I. H., "Simulation of (R)- and (S)- Ketoprofen Separation in Simulated Moving Bed," Korean J. Biotechnol. Bioeng., 29(4), 250-262(2014).

Cited by

  1. Effect of pH adjustment and ratio of oppositely charged polymers on the mechanistic performance and sustained release of volatile perfume in interpolyelectrolyte complex microcapsules vol.604, pp.None, 2016, https://doi.org/10.1016/j.ijpharm.2021.120672