DOI QR코드

DOI QR Code

In-vitro Anticancer and Antioxidant Activity of Gold Nanoparticles Conjugate with Tabernaemontana divaricata flower SMs Against MCF -7 Breast Cancer Cells

  • Preetam Raj, J.P (Department of Plant Biology and Biotechnology, PG Biotechnology, Loyola College) ;
  • Purushothaman, M (Department of Plant Biology and Biotechnology, PG Biotechnology, Loyola College) ;
  • Ameer, Khusro (Department of Plant Biology and Biotechnology, PG Biotechnology, Loyola College) ;
  • Panicker, Shirly George (Department of Plant Biology and Biotechnology, PG Biotechnology, Loyola College)
  • Received : 2015.02.21
  • Accepted : 2015.06.09
  • Published : 2016.02.01

Abstract

Biologically stabilized gold nanoparticles were synthesized from the flower aqueous extract of T. divaricata. The synthesized nanoparticles were characterized by UV-Vis spectrophotometer, Zeta sizer, FTIR and TEM analysis. T. divaricata reduced gold nanoparticles having particle size and potential of 106.532 nm and -10.2 mV, respectively, with a characteristic peak of 550 nm in UV-visible spectrophotometer. FTIR graph after comparison between the crude flower extract and gold nanoparticles showed three major shifts in the functional groups. The morphology and size of the gold nanoparticles were examined by HRTEM analysis, which showed that most of the nanoparticles were nearly spherical with size of 100 nm. The gold nanoparticles synthesized demonstrated potent anticancer activity against MCF-7 cell line. The findings conclude that the antioxidant molecule present in T. divaricata may be responsible for both reduction and capping of gold nanoparticles which possess potential applications in medicine and pharmaceutical fields.

Keywords

References

  1. Ma, X. and Yu, H., The Yale J. Bio. Med., 79(3), 85(2006).
  2. Tanih, N. F. and Ndip, R. N., J. Scientific. World, 7, (2013).
  3. Amruthraj, N. J., Preetam Raj, J. P. and Lebel, A., Applied Nanoscience 5, 403(2015). https://doi.org/10.1007/s13204-014-0330-5
  4. Yang, H.-C. and Hon, M.-H., J. Microchem., 92, 87(2009). https://doi.org/10.1016/j.microc.2009.02.001
  5. Huo, Q., Colloids Surfaces B: Biointerfaces, 59, 1(2007). https://doi.org/10.1016/j.colsurfb.2007.04.019
  6. Song, J. Y. and Kim, B., Bioprocess. Biosyst. Eng., 32, 79 (2008).
  7. Kumar, V., Yadav, C. S. and Yadav, S. K., J. Chem, Technol. Biotech., 85, 1301(2010). https://doi.org/10.1002/jctb.2427
  8. Singh, B., Sharma, R. A. and Vyas, G. K., Br., 125-132(2013).
  9. Abel, E. E., John Poonga, P. R. and Panicker, S. G., Appl Nanosci (2015).
  10. Mossman, T., J. Immunol. Methods, 64, 55(1983).
  11. Sinha, K. A., Anal Biochem., 47, 389(1972). https://doi.org/10.1016/0003-2697(72)90132-7
  12. Ebrahimzadeh, M. A., Nabavi, S. F. and Nabavi, S. M., Pharmacol. (online), 2, 1097(2009).
  13. Rio, D. D., Pellegrini, N., Colombi, B., Bianchi, M., Serafini, M., Torta, F., Tegoni, M., Musci, M. and Brighenti, F., Clin Chem., 49, 690(2003). https://doi.org/10.1373/49.4.690
  14. Syed Abeer, JIMSA., 25(3), (2012).
  15. Buzea, C. and Ivan, I., Pacheco Blandino and Kevin Bobbie, Biointerphases., 2(4), MR17-MR172(2007). https://doi.org/10.1116/1.2815690
  16. SobezakBasavegowda, N., Kupiec, A., Malina, D., Yathirajan, H. S., Keerthi, V. R., Chandrasekar, N., Dinkar, S. and Liny, P., Adv. Mat. Lett., 4, 332(2013). https://doi.org/10.5185/amlett.2012.9423
  17. Elavazhagan, T. and Arunachalam, K. D., Int. J. Nanomed., 6, 1265(2011).
  18. Rajesh, W. K., Jaya, R. L., Niranjan, S. K., Vijay, D. M. and Sahebrao, B. K., Curr. Nanosci., 5, 117(2009). https://doi.org/10.2174/157341309787314674
  19. Ankamwar, B., Damle, C., Ahmed, A. and Sastry, M., J. Nanosci. Nanotechnol., 5, 1665(2005). https://doi.org/10.1166/jnn.2005.184
  20. Sivakumar, P., Nethradevi, C. and Renganathan, S., Asian J. Pharm. Clin. Red., 5(4), 97(2012).
  21. Poornima, K. and Gopalakrishnan, V. K., Chinese Journal of Biology, 1(2), 1(2012).

Cited by

  1. Anti-cancer green bionanomaterials: present status and future prospects vol.10, pp.4, 2017, https://doi.org/10.1080/17518253.2017.1385856
  2. Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics vol.101, pp.9, 2017, https://doi.org/10.1007/s00253-017-8250-4
  3. Starch-templated bio-synthesis of gold nanoflowers for in vitro antimicrobial and anticancer activities vol.8, pp.3, 2018, https://doi.org/10.1007/s13204-018-0793-x
  4. Phytochemical and nutra-pharmaceutical attributes of Mentha spp.: A comprehensive review vol.14, pp.5, 2016, https://doi.org/10.1016/j.arabjc.2021.103106
  5. Assessment on in vitro medicinal properties and chemical composition analysis of Solanum virginianum dried fruits vol.14, pp.12, 2016, https://doi.org/10.1016/j.arabjc.2021.103442