Inter-fractional Target Displacement in the Prostate Image-Guided Radiotherapy using Cone Beam Computed Tomography

전립선암 영상유도 방사선 치료시 골반내장기의 체적변화에 따른 표적장기의 변화

  • Dong, Kap Sang (Department of Radiation Oncology, Gachon University Gil Medical Center) ;
  • Back, Chang Wook (Department of Radiation Oncology, Gachon University Gil Medical Center) ;
  • Jeong, Yun Jeong (Department of Radiation Oncology, Gachon University Gil Medical Center) ;
  • Bae, Jae Beom (Department of Radiation Oncology, Gachon University Gil Medical Center) ;
  • Choi, Young Eun (Department of Radiation Oncology, Gachon University Gil Medical Center) ;
  • Sung, Ki Hoon (Department of Radiation Oncology, Gachon University Gil Medical Center)
  • 동갑상 (가천대길병원방사선종양학과) ;
  • 백창욱 (가천대길병원방사선종양학과) ;
  • 정윤정 (가천대길병원방사선종양학과) ;
  • 배재범 (가천대길병원방사선종양학과) ;
  • 최영은 (가천대길병원방사선종양학과) ;
  • 성기훈 (가천대길병원방사선종양학과)
  • Received : 2016.11.11
  • Accepted : 2016.12.10
  • Published : 2016.12.30

Abstract

Purpose : To quantify the inter-fractional variation in prostate displacement and their dosimetric effects for prostate cancer treatment. Materials and Methods : A total of 176 daily cone-beam CT (CBCT) sets acquired for 6 prostate cancer patients treated with volumetric-modulated arc therapy (VMAT) were retrospectively reviewed. For each patient, the planning CT (pCT) was registered to each daily CBCT by aligning the bony anatomy. The prostate, rectum, and bladder were delineated on daily CBCT, and the contours of these organs in the pCT were copied to the daily CBCT. The concordance of prostate displacement, deformation, and size variation between pCT and daily CBCT was evaluated using the Dice similarity coefficient (DSC). Results : The mean volume of prostate was 37.2 cm3 in the initial pCT, and the variation was around ${\pm}5%$ during the entire course of treatment for all patients. The mean DSC was 89.9%, ranging from 70% to 100% for prostate displacement. Although the volume change of bladder and rectum per treatment fraction did not show any correlation with the value of DSC (r=-0.084, p=0.268 and r=-0.162, p=0.032, respectively), a decrease in the DSC value was observed with increasing volume change of the bladder and rectum (r=-0.230,p=0.049 and r=-0.240,p=0.020, respectively). Conclusion : Consistency of the volume of the bladder and rectum cannot guarantee the accuracy of the treatment. Our results suggest that patient setup with the registration between the pCT and daily CBCT should be considered aligning soft tissue.

목 적 : 전립선암 방사선치료에서 방광과 직장의 체적변화에 따른 전립선의 위치 및 모양변화를 파악하여 이들 변화가 표적체적에 미치는 영향을 파악하고자 하였다. 대상 및 방법 : 본원 전립선암 protocol에 따라 방사선치료를 시행한 환자 6명을 대상으로 후향적 영상자료분석 및 윤곽설정을 시행하였다. 설계용 computed tomography (pCT)와 분할치료 시 획득된 cone-beam CT (CBCT)를 이용하여 전립선, 방광, 그리고 직장의 윤곽을 설정(contouring)하였다. 두 영상자료의 골격구조 기반 조사영역맞춤을 통해 전립선의 위치변화를 관찰하였으며, 전립선의 위치변화, 모양변형, 그리고 크기변화를 종합적으로 분석하기 위해 Dice similarity coefficient(DSC)를 이용하였다. 결 과 : 전립선의 체적은 pCT에서 평균 37.2cm3 로 측정되었으며 약 5% 이내의 크기변화를 나타내었고, 전립선의 DSC는 평균 89.9%로 환자마다 다양한 분포양상이 관측되었다. 방광의 체적변화에 따른 전립선의 DSC 변화를 상관분석한 결과 관련성을 찾을 수 없었지만(r=-0.084,p=0.268), 방광체적의 증감에 따른 층화분석 시 방광의 체적이 증가한 경우에서 DSC 와 방광변화량 간에 통계적으로 유의한 음의 상관관계를 관찰할 수 있었다(r=-0.230,p=0.049). 직장의 체적변화에 따른 전립선의 DSC 변화를 분석한 결과 직장의 체적변화가 증가함에 따라 DSC가 감소하는 것으로 나타났다(r=-0.162,p=0.032). 직장체적에 대한 층화분석에서는 체적이 pCT보다 증가한 경우에 강한 상관관계를 나타내었다 (r=-0.240,p=0.020). 결 론 : 방광과 직장의 체적을 일정하게 유지하는 것이 치료의 정확도를 보장하는 것은 아닌 것으로 나타났다. 따라서 전립선암의 방사선치료 시 CBCT를 이용한 연조직 기반의 조사영역맞춤이 중요하며, 직장풍선(rectal balloon) 등을 이용한 체적관리가 치료정확도를 유지하는데 역할을 할 것으로 사료된다.

Keywords

References

  1. Kerkhof EM, van der Put RW, Raaymakers BW et al. Variation in target and rectum dose due to prostate deformation: an assessment by repeated MR imaging and treatment planning. Physics in medicine and biology 2008; 53: 5623-34. https://doi.org/10.1088/0031-9155/53/20/004
  2. Peng C, Ahunbay E, Chen G et al. Characterizing interfraction variations and their dosimetric effects in prostate cancer radiotherapy. International journal of radiation oncology, biology, physics 2011; 79: 909-14. https://doi.org/10.1016/j.ijrobp.2010.05.008
  3. Nederveen AJ, Dehnad H, van der Heide UA et al. Comparison of megavoltage position verification for prostate irradiation based on bony anatomy and implanted fiducials. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology 2003; 68: 81-8. https://doi.org/10.1016/S0167-8140(03)00129-4
  4. Schallenkamp JM, Herman MG, Kruse JJ et al. Prostate position relative to pelvic bony anatomy based on intraprostatic gold markers and electronic portal imaging. International journal of radiation oncology, biology, physics 2005; 63: 800-11. https://doi.org/10.1016/j.ijrobp.2005.02.022
  5. van der Heide UA, Kotte AN, Dehnad H et al. Analysis of fiducial marker-based position verification in the external beam radiotherapy of patients with prostate cancer. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology 2007; 82: 38-45. https://doi.org/10.1016/j.radonc.2006.11.002
  6. Court L, Rosen I, Mohan R et al. Evaluation of mechanical precision and alignment uncertainties for an integrated CT/LINAC system. Medical physics 2003; 30: 1198-210. https://doi.org/10.1118/1.1573792
  7. Roach M, 3rd, Faillace-Akazawa P, Malfatti C. Prostate volumes and organ movement defined by serial computerized tomographic scans during threedimensional conformal radiotherapy. Radiation oncology investigations 1997; 5: 187-94. https://doi.org/10.1002/(SICI)1520-6823(1997)5:4<187::AID-ROI4>3.0.CO;2-U
  8. Akino Y, Yoshioka Y, Fukuda S et al. Estimation of rectal dose using daily megavoltage cone-beam computed tomography and deformable image registration. International journal of radiation oncology, biology, physics 2013; 87: 602-8. https://doi.org/10.1016/j.ijrobp.2013.06.2054
  9. Haworth A, Paneghel A, Herschtal A et al. Verification of target position in the post-prostatectomy cancer patient using cone beam CT. Journal of medical imaging and radiation oncology 2009; 53: 212-20. https://doi.org/10.1111/j.1754-9485.2009.02057.x
  10. Nijkamp J, Pos FJ, Nuver TT et al. Adaptive radiotherapy for prostate cancer using kilovoltage cone-beam computed tomography: first clinical results. International journal of radiation oncology, biology, physics 2008; 70: 75-82. https://doi.org/10.1016/j.ijrobp.2007.05.046
  11. Oates R, Brown A, Tan A et al. Real-time Imageguided Adaptive-predictive Prostate Radiotherapy using Rectal Diameter as a Predictor of Motion. Clinical oncology (Royal College of Radiologists (Great Britain)) 2016.
  12. Zou KH, Warfield SK, Bharatha A et al. Statistical validation of image segmentation quality based on a spatial overlap index. Academic radiology 2004; 11: 178-89. https://doi.org/10.1016/S1076-6332(03)00671-8
  13. Pollack A, Zagars GK, Starkschall G et al. Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. International journal of radiation oncology, biology, physics 2002; 53: 1097-105. https://doi.org/10.1016/S0360-3016(02)02829-8
  14. Marks LB, Yorke ED, Jackson A et al. Use of normal tissue complication probability models in the clinic. International journal of radiation oncology, biology, physics 2010; 76: S10-9. https://doi.org/10.1016/j.ijrobp.2009.07.1754
  15. Coia LR, Myerson RJ, Tepper JE. Late effects of radiation therapy on the gastrointestinal tract. International journal of radiation oncology, biology, physics 1995; 31: 1213-36. https://doi.org/10.1016/0360-3016(94)00419-L
  16. Lebesque JV, Bruce AM, Kroes AP et al. Variation in volumes, dose-volume histograms, and estimated normal tissue complication probabilities of rectum and bladder during conformal radiotherapy of T3 prostate cancer. International journal of radiation oncology, biology, physics 1995; 33: 1109-19. https://doi.org/10.1016/0360-3016(95)00253-7
  17. Zelefsky MJ, Cowen D, Fuks Z et al. Long term tolerance of high dose three-dimensional conformal radiotherapy in patients with localized prostate carcinoma. Cancer 1999; 85: 2460-8. https://doi.org/10.1002/(SICI)1097-0142(19990601)85:11<2460::AID-CNCR23>3.0.CO;2-N
  18. Zelefsky MJ, Fuks Z, Hunt M et al. High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. International journal of radiation oncology, biology, physics 2002; 53: 1111-6. https://doi.org/10.1016/S0360-3016(02)02857-2
  19. Fokdal L, Honore H, Hoyer M et al. Impact of changes in bladder and rectal filling volume on organ motion and dose distribution of the bladder in radiotherapy for urinary bladder cancer. International journal of radiation oncology, biology, physics 2004; 59: 436-44. https://doi.org/10.1016/j.ijrobp.2003.10.039