DOI QR코드

DOI QR Code

A SNS Data-driven Comparative Analysis on Changes of Attitudes toward Artificial Intelligence

SNS 데이터 분석을 기반으로 인공지능에 대한 인식 변화 비교 분석

  • Yun, You-Dong (Dept. of Computer Science and Engineering, Korea University) ;
  • Yang, Yeong-Wook (Dept. of Computer Science and Engineering, Korea University) ;
  • Lim, Heui-Seok (Dept. of Computer Science and Engineering, Korea University)
  • Received : 2016.09.07
  • Accepted : 2016.12.20
  • Published : 2016.12.28

Abstract

AI (Artificial Intelligence) has attracted interest as a key element for technological advancement in various fields. In Korea, internet companies are leading the development of AI business technology. Active government funding plans for AI technology has also drawn interest. But not everyone is optimistic about AI. Both positive and negative opinions coexist about AI. However, attempts on analyzing people's opinions about AI in a quantitative way was scarce. In this study, we used text mining on SNS (Social Networking Service) to collect opinions about AI. And then we performed a comparative analysis about whether people view it as a positive thing or a negative thing and performed a comparative analysis to recognize popular key-words. Based on the results, it was confirmed that the change of key-words and negative posts have increased through time. And through these results, we were able to predict trend about AI.

인공지능은 현재의 컴퓨팅시스템 성능한계를 극복하고 컴퓨팅 환경을 발전시켜 다양한 분야의 기술 발전을 위한 핵심 기술로서 주목받고 있다. 이에 세계 국가들은 물론이고, 국내에서도 인터넷 기업을 중심으로 사업화 기술개발이 이루어지고 있다. 정부 역시 인공지능 기술 개발을 위해 다양한 지원을 아끼지 않고 있으며, 이에 따른 기술의 발전으로 인공지능에 대한 관심이 증폭되고 있다. 그러나 긍정적인 시각과 부정적인 시각이 공존하고 있는 인공지능 분야에서 사람들의 의견을 분석하는 연구는 매우 부족한 실정이다. 이에 따라 본 연구에서는 텍스트 마이닝 기법을 활용하여 SNS (Social Networking Service)에서 수집된 인공지능에 대한 사람들의 의견 데이터를 연도별로 비교 분석하여 수집된 데이터에 대한 긍정, 부정 여부와 함께 연도별 키워드를 확인하였다. 분석 결과, 국내 인공지능 분야의 연도별 키워드를 확인하였으며, 시간의 흐름에 따라 인공지능에 대해 부정적인 의견이 증가하는 것을 확인하였다. 그리고 이러한 비교분석 결과를 기반으로 인공지능 분야의 흐름에 대해 예측할 수 있었다.

Keywords

References

  1. S. H. Bae, "The coming era of artificial intelligence, and strategic plan of Busan." BDI Policy Focus, 304, pp. 1-12, 2016.
  2. B. W. Kim, "Trend Analysis and National Policy for Artificial Intelligence." Informatization Policy, Vol. 23, No. 1, pp. 74-93, 2016. https://doi.org/10.22693/NIAIP.2016.23.1.074
  3. C. W. Yoon and B. W. Kim and J. N. Seo and W. S. You and J. T. Oh, "Trends of Artificial Intelligence Technology and Policy," Electronics and telecommunications trends, Vol. 31, No. 2, pp. 9-17, 2016.
  4. S. W. Park, "Artificial Intelligence, Social Change and Your Preferable Futures," Trends and Prospects, No. 97, pp. 226-235, 2016.
  5. Y. J. Kim and B. E. You. "Changes in the future society from the development of artificial intelligence technology will bring." Korea Institute of Science & Technology Evaluation and Planning(KISTEP), 2016.
  6. J. H. Na, "The future of the development and employment of artificial intelligence." Future Horizon: Spring, No. 28, pp. 14-17, 2016.
  7. J. Y. Seo and C. Koh, "Big Data Analysis by Sensitivity Analysis." Journal of the Society of Convergence Knowledge, Vol. 2, No. 1, pp. 15-21, 2014.
  8. J. S. Sohn and S. W. Cho and K. L. Kwon and I. J. Chung, "Improved Social Network Analysis Method in SNS." Journal of Intelligence and Information Systems, Vol. 18, No. 4, pp. 117-127, 2012. https://doi.org/10.13088/JIIS.2012.18.4.117
  9. J. Y. Chang, "Convergence of Education and Information & Communication Technology : A Study on the Communication Characteristics of SNS Affecting Relationship Development between Professor and Student." Journal of the Korea Convergence Society, Vol. 6, No. 6, pp. 213-219, 2015. https://doi.org/10.15207/JKCS.2015.6.6.213
  10. A. R. Lee and J. S. Bang and Y. H. Kim, "A Design of a TV Advertisement Effectiveness Analysis System Using SNS Big-data." KIISE Transactions on Computing Practices, KTCP, Vol. 21, No. 9, pp. 579-586, 2015. https://doi.org/10.5626/KTCP.2015.21.9.579
  11. Y. C. Hwang and C. Koh, "Analysis of Opinion Social Data on the SNS (Social Network Service) by Analyzing of Collective Damage Reply." ournal of Digital Convergence, Vol. 11, No. 5, pp. 41-51, 2013. https://doi.org/10.14400/JDPM.2013.11.12.41
  12. S. I. Son and C. G. Park, "A Study on Design of Agent for SNS Big Data Analysis." Journal of Industrial science researches, Vol. 31, No. 1, pp. 209-214, 2013.
  13. S. N. Kang and Y. S. Kim and S. H. Choi, "Study on the social issue sentiment classification using text mining." Journal of the Korean data & information science society, Vol. 26, No. 5, pp. 1167-1173, 2015. https://doi.org/10.7465/jkdi.2015.26.5.1167
  14. J. Y. Jang, "Automatic Retrieval of SNS Opinion Document Using Machine Learning Technique." The Journal of the Institute of Internet, Broadcasting and Communication, Vol. 13, No. 5, pp. 27-35, 2013. https://doi.org/10.7236/JIIBC.2013.13.5.27
  15. S. Choi and K. H. Choi, "Achievement and satisfaction research of the undergraduate orchestra club activities-A convergent aspects of statistical method and opinion mining." Journal of the Korea Convergence Society, Vol. 6, No. 4, pp. 25-31, 2015. https://doi.org/10.15207/JKCS.2015.6.4.025
  16. E. H. Jeong and B. K. Lee, "A Design of SNS Emotional Information Analysis Strategy based on Opinion Mining." Journal of Korea institute of information, electronics, and communication technology, Vol. 8, No. 6, pp. 544-550, 2015. https://doi.org/10.17661/jkiiect.2015.8.6.544
  17. Y. J. Lee and J. H. Seo and J. T. Choi, "Fashion Trend Marketing Prediction Analysis Based on Opinion Mining Applying SNS Text Contents." Journal of Korean Institute of Information Technology, Vol. 12, No. 12, pp. 163-170, 2014.
  18. W. S. Kim and J. H. Lee and J. W. Park and J. H. Chou, "A Technique of the Approval Rating Analysis for Political Party using Opinion Mining." Journal of Korean Institute of Information Technology, Vol. 12, No. 10, pp. 133-141, 2014.
  19. M. S. Chae and K. H. In and U. M. Kim, "Analyzing familiarity of SNS Friend System Using Text and Opinion Mining." Korean Institute of information Scientists and Engineers Conference Proceedings, Vol. 39, No. 2, pp. 98-100, 2012.
  20. S. H. Jun, "A Big Data Preprocessing using Statistical Text Mining", Journal of Korean institute of intelligent systems, Vol. 25, No. 5, pp. 470-476, 2015. https://doi.org/10.5391/JKIIS.2015.25.5.470
  21. H. G. Jun and G. S. Hyun and K. B. Lim and W. H. Lee and H. J. Kim, "Big Data Preprocessing for Predicting Box Office Success." KIISE Transactions on Computing Practices, Vol. 20, No. 12, pp. 615-622, 2014. https://doi.org/10.5626/KTCP.2014.20.12.615
  22. M. S. Kim, "Predicting Online Purchase Using Machine Learning." Yonsei University graduate school Business Administration Master's Thesis, 2015.
  23. H. H. Lee and S. H. Jung and E. J. Choi, "A Case Study on Machine Learning Applications and Performance Improvement in Learning Algorithm." Journal of Digital Convergence, Vol. 14, No. 2, pp. 245-258, 2016. https://doi.org/10.14400/JDC.2016.14.2.245
  24. D. H. Choi and J. O. Park, "The Application Method of Machine Learning for Analyzing User Transaction Tendency in Big Data environments." Journal of Korea Institute of Information and Communication Engineering, Vol. 19, No. 10, pp. 2232-2240, 2015. https://doi.org/10.6109/jkiice.2015.19.10.2232
  25. B. J. Choe and Y. K. Hwang, "Machine Learning and Data Mining Techniques for Information Diffusion and Structure Analysis of Social Networks." Communications of the Korean Institute of Information Scientists and Engineer, Vol. 32, No. 7, pp. 21-25, 2014.
  26. K. T. Kim, "Purchase prediction through clickstream data of internet stores based on deep learning technique." Hanyang University graduate school Business Administration Master's Thesis, 2016.
  27. S. M. Ahn, "Deep Learning Architectures and Applications." The Journal of Intelligence and Information Systems, Vol. 22, No. 2, pp. 127-142, 2016. https://doi.org/10.13088/jiis.2016.22.2.127
  28. Corchado, E, Abraham, A, de Carvalho, A, Wozniak, M, Cho, S. B, Quintian, H. C, "Recent advancements in hybrid artificial intelligence systems and its application to real-world problems." Neuro computing, Vol. 176, pp. 1-2, 2016.
  29. D C, Marlies, Stock, Michiel, De Baets, Bernard, Waegeman, Willem, "Data-driven recipe completion using machine learning methods." Data-driven recipe completion using machine learning methods, Vol. 49, pp. 1-13, 2016. https://doi.org/10.1016/j.tifs.2015.11.010
  30. Chen, B., Polatkan, G., Sapiro, G., Dunson, D., Carin, L, "The Hierarchical Beta Process for Convolutional Factor Analysis and Deep Learning." Machine Learning -International Workshop Then Conference, Vol. 28, pp. 361-368, 2011.