References
- Abowd, J. M., Stinson, M., and Benedetto, G. (2006). Final report to the Social Security Administration on the SIPP/SSA/IRS public use file project, Technical Report, U.S. Census Bureau Longitudinal Employer-Household Dynamics Program.
- Abowd, J. M. and Vilhuber, L. (2008). How protective are synthetic data? In J. Domingo-Ferrer and Y. Saygin (Eds), Privacy in Statistical Databases (pp. 239-246), Springer-Verlag Berlin, Heidelberg.
- Abowd, J. M. and Woodcock, S. D. (2001). Disclosure limitation in longitudinal linked data, In P. Doyle, J. Lane, L. Zayatz, and J. Theeuwes (Eds), Confidentiality, Disclosure, and Data Access: Theory and Practical Applications for Statistical Agencies (pp. 215-277), North-Holland, Amsterdam.
- Abowd, J. M. and Woodcock, S. D. (2004). Multiply-imputing confidential characteristics and file links in longitudinal linked data, In Privacy in Statistical Databases (pp. 290-297), Springer Berlin, Heidelberg.
- Bethlehem, J. G., Keller, W. J., and Panneko, J. (1990). Disclosure control of microdata. Journal of the American Statistical Association, 85, 38-45. https://doi.org/10.1080/01621459.1990.10475304
- Blum, A., Dwork, C., McSherry, F., and Nissim, K. (2005). Practical privacy: The SuLQ framework, In Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (pp. 128-138), Association for Computing Machinery, New York.
- Chipperfield, J. and Yu, F. (2011). Protecting confidentiality in a remote analysis server for tabulation and analysis of data, Paper presented at the October 2011 UNECE Work Session on Statistical Data Confidentiality.
- Drechsler, J. (2012). New data dissemination approaches in old Europe - synthetic datasets for a German establishment survey. Journal of Applied Statistics, 39, 243-265. https://doi.org/10.1080/02664763.2011.584523
- Drechsler, J., Bender, S., and Rassler, S. (2008). Comparing fully and partially synthetic datasets for statistical disclosure control in the German IAB Establishment Panel. Transactions on Data Privacy, 1, 1002-1050.
- Drechsler, J. and Reiter, J. P. (2009). Disclosure risk and data utility for partially synthetic data: an empirical study using the German IAB Establishment Survey. Journal of Official Statistics, 25, 589-603.
- Drechsler, J. and Reiter, J. P. (2011). An empirical evaluation of easily implemented, nonparametric methods for generating synthetic datasets. Computational Statistics and Data Analysis, 55, 3232-3243. https://doi.org/10.1016/j.csda.2011.06.006
- Duncan, G. T., Elliot, M., and Gonzalez J. J. S. (2011). Statistical confidentiality: principles and practice, Springer.
- Duncan, G. and Lambert, D. (1989). The risk of disclosure for microdata. Journal of Business & Economic Statistics, 7, 207-217.
- Dwork, C. (2006). Differential Privacy, In Inference Control in Statistical Databases (pp. 1-12), Springer, Berlin, Heidelberg.
- Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to sensitive in private data analysis, In Proceedings of the 3rd Theory of Cryptography Conference (pp. 265-284), Springer, New York.
- Dwork, C. and Smith, A. (2009). Differential privacy for statistics: What we know and what we want to learn. Journal of Privacy and Confidentiality, 1, 135-154.
-
Franconi, L. and Polettini, S. (2004). Individual risk estimation in
${\mu}$ -Argus: a review, In Privacy in Statistical Databases (pp. 262-272), Springer, New York. - Jeong, D. M. and Jeong, M. (2008). A method of masking for 2005 Korean Census microdata. Korean Journal of Applied Statistics, 21, 313-325. https://doi.org/10.5351/KJAS.2008.21.2.313
- Jeong, D. M. and Kang, D. H. (2006). Disclosure control methods to increase microdata usage (the original title is written in Korean), Daejeon, Korea.
- Jeong, D. M., Kim, J. J., and Kim, K. M. (2009). A method of masking based on multiplicative noise. Korean Journal of Applied Statistics, 22, 141-151. https://doi.org/10.5351/KJAS.2009.22.1.141
- Karr, A. F., Kohnen, C. N., Oganian, A. Reiter, J. P., and Sanil, A. P. (2006). A framework for evaluating the utility of data altered to protect confidentiality. The American Statistician, 60, 1-9. https://doi.org/10.1198/000313006X93258
- Kim, H. J., Karr, A. F., and Reiter, J. P. (2015). Statistical disclosure limitation in the presence of edit rules. Journal of Official Statistics, 31, 1-18 https://doi.org/10.1515/jos-2015-0001
- Kim, K., Lee, E., and Jeong, M. (2007). A case study on the overseas release system of microdata, Statistical Research Institute.
- Kim, K.-S. (2009). Release of microdata and statistical disclosure control techniques. Communications for Statistical Applications and Methods, 16, 1-11. https://doi.org/10.5351/CKSS.2009.16.1.001
- Kim, K. Y., Kwon, D. H., Shin, J. E., and Lee. S. H. (2011). Introduction to Statistical Disclosure Control (the original title is written in Korean), Freeacademy, Gyeonggi-do.
- Kim, Y.-W., Kim, T.-Y., and Ki, K.-N. (2011). Application of a statistical disclosure control techniques based on multiplicative noise. Korean Journal of Applied Statistics, 24, 127-136. https://doi.org/10.5351/KJAS.2011.24.1.127
- Kinney, S. K. and Reiter, J. P. (2007). Making public use, synthetic files of the Longitudinal Business Database, In Proceedings of the Joint Statistical Meetings, American Statistical Association, Alexandria, VA.
- Kinney, S. K., Reiter, J. P., Reznek, A. P., Miranda, J., Jarmin, R. S., and Abowd, J. M. (2011). Towards unrestricted public use business microdata: the synthetic longitudinal business database. International Statistical Review, 79, 363-384.
- Krenzke, T., Gentleman, J. F., Li, J. and Moriarity, C. (2013). Addressing disclosure concerns and analysis demands in a Real-Time Online Analytic System. Journal of Official Statistics, 29, 99-124.
- Lee, Y. (2013). Review on statistical methods for protecting privacy and measuring risk of disclosure when releasing information for public use. Journal of the Korean Data and Information Science Society, 24, 1029-1041. https://doi.org/10.7465/jkdi.2013.24.5.1029
- Lee, Y. H. and Kim, Y. D. (2011). Statistical disclosure control for EduData (the original title is written in Korean), Korea Eduation & Research Information Service, Daegu, Korea.
- Lucero, J., Zayatz, L., Singh, L., You, J., DePersio, M., and Freiman, M. (2011). The current stage of the microdata analysis system at the U.S. Census Bureau, In Proceedings of the 58th World Statistical Congress of the International Statistical Institute.
- Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., and Vilhuber, L. (2008). Privacy: theory meets practice on the map, In IEEE 24th International Conference on Data Engineering, 277-286.
- Manrique-Vallier, D. and Reiter, J. (2012). Estimating identification disclosure risk using mixed membership models. Journal of the American Statistical Association, 107, 1385-1394. https://doi.org/10.1080/01621459.2012.710508
- Matthews, G. J. and Harel, O. (2011). Data confidentiality: A review of methods for statistical disclosure limitation and methods for accessing privacy. Statistics Surveys, 5, 1-29 https://doi.org/10.1214/11-SS074
- McClure, D. and Reiter, J. P. (2012). Differential privacy and statistical disclosure risk measures: An investigation with binary synthetic data. Transactions on Data Privacy, 5, 535-552.
- Meindl, B., Templ, M., and Kowarik, A. (2013). Guidelines for the Anonymization of Microdata Using R-package sdcMicro.
- Muralidhar, K., O'Keefe, C. M. and Sarathy, R. (2013). A general methodology for masking output from remote analysis systems, Paper presented at the October 2013 UNECE Work Session on Statistical Data Confidentiality.
- Nguyen, T. T., Xiao, X., Yang, Y., Hui, S. C., Shin, H., and Shin, J. (2016). Collecting and analyzing data from smart device users with local differential privacy, arXiv:1606.05052v1, cs.DB.
- Nissim, K., Raskhodnikova, S., and Smith, A. (2007). Smooth sensitivity and sampling in private data analysis, In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, 75-84.
- Park, M. J. (2014). Evaluation of microdata masking approaches with Survey of Household Finances and Living Conditions (the original title is written in Korean), Statistical Research Institute, Daejeon.
- Park, M. J., Kwon, S. P., and Shim, K. H. (2013). Microdata masking for Survey of Household Finances and Living Conditions (the original title is written in Korean), Statistical Research Institute, Daejeon.
- Park, W.-H. (2004). Disclosure limitation techniques for statistical tables and microdata. Journal of The Korean Official Statistics, 9, 146-172.
- Raghunathan, T. E., Lepkowski, J. M., Van Hoewyk, J., and Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27, 85-95.
- Raghunathan, T. E., Reiter, J. P., and Rubin, D. B. (2003). Multiple imputation for statistical disclosure limitation. Journal of Official Statistics, 19, 1-16.
- Reeder, L. B., Stinson, M., Trageser, K. E., and Vilhuber, L. (2015). Codebook for the SIPP Synthetic Beta 6.0.2., Cornell Institute for Social and Economic Research and Labor Dynamics Institute, Cornell University, Ithaca, NY.
- Reiter, J. P. (2003a). Model diagnostics for remote-access regression servers. Statistics and Computing, 13, 371-380. https://doi.org/10.1023/A:1025623108012
- Reiter, J. P. (2003b). Inference for partially synthetic, public use microdata sets. Survey Methodology, 29, 181-188.
- Reiter, J. P. (2004). New approaches to data dissemination: a glimpse into the future, Chance, 17, 12-16.
- Reiter, J. P. (2005). Releasing multiply imputed, synthetic public use microdata: an illustration and empirical study. Journal of the Royal Statistical Society, Series A, 168, 185-205. https://doi.org/10.1111/j.1467-985X.2004.00343.x
- Reiter, J. P. and Raghunathan, T. E. (2007). The multiple adaptations of multiple imputation. Journal of the American Statistical Association, 102, 1462-1471. https://doi.org/10.1198/016214507000000932
- Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applies statistician. The Annals of Statistics, 12, 1151-1172. https://doi.org/10.1214/aos/1176346785
- Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys, John Wiley & Sons, NJ.
- Rubin, D. B. (1993). Statistical disclosure limitation. Journal of Official Statistics, 9, 461-468.
- Rubin, D. B. and Schenker, N. (1987). Multiple imputation for interval estimation from simple random samples with ignorable nonresponse. Journal of the American Statistical Association, 81, 366-374.
- Skinner, C. J. and Holmes, D. J. (1998). Estimating the re-identification risk per record in microdata. Journal of Official Statistics, 14, 361-371.
- Skinner, C. and Shlomo, N. (2008). Assessing identification risk in survey microdata using log-linear models. Journal of the American Statistical Association, 103, 989-1001. https://doi.org/10.1198/016214507000001328
-
Statistics Netherlands (2007).
${\mu}$ -Argus User's manual, 4.1 version. - Sweeney, L. (2002). Achieving k-anonymity privacy protection using generalization and suppression. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10, 571-588. https://doi.org/10.1142/S021848850200165X
- Templ, M. (2008). Statistical disclosure control for microdata using the R-package sdcMicro. Transactions on Data Privacy, 1, 67-85.
- Templ, M. and Meindl, B. (2008). Robustification of microdata masking methods and the comparison with existing method, Privacy in Statistical Database, Springer, 5262, 177-189.
- Wasserman, L. and Zhou, S. (2012). A statistical framework for differential privacy. Journal of the American Statistical Association, 105, 375-389.
- Woo, M.-J., Reiter, J. P., Oganian, A., and Karr, A. F. (2009). Global measures of data utility for microdata masked for disclosure limitation. The Journal of Privacy and Confidentiality, 1, 111-124.